online sliding window implemented
--HG-- branch : sandbox
This commit is contained in:
190
mpl/sw-trend1.py
190
mpl/sw-trend1.py
@@ -1,13 +1,13 @@
|
||||
# Copyright (c) 2009 Andreas Balogh
|
||||
# See LICENSE for details.
|
||||
|
||||
'''
|
||||
Online bottom-up
|
||||
"""
|
||||
Online sliding window with trend analysis
|
||||
|
||||
1. segment tick data with a sliding window alogrithm
|
||||
2. recognise low/high points by comparing slope information
|
||||
3. recognise trend by observing low/high point difference
|
||||
'''
|
||||
"""
|
||||
|
||||
# system imports
|
||||
|
||||
@@ -50,7 +50,7 @@ MDF_REO = re.compile("(..):(..):(..)\.*(\d+)*")
|
||||
|
||||
|
||||
def tdl(tick_date):
|
||||
''' returns a list of tick tuples (cdt, last) for specified day '''
|
||||
""" returns a list of tick tuples (cdt, last) for specified day """
|
||||
fiid = "846900"
|
||||
year = tick_date.strftime("%Y")
|
||||
yyyymmdd = tick_date.strftime("%Y%m%d")
|
||||
@@ -98,7 +98,7 @@ def tdl(tick_date):
|
||||
return (x, y, v)
|
||||
|
||||
def interpolate_line(xs, ys):
|
||||
'''Fit a straight line y = bx + a to a set of points (x, y) '''
|
||||
"""Fit a straight line y = bx + a to a set of points (x, y) """
|
||||
# from two data points only!
|
||||
x1, x2 = xs
|
||||
y1, y2 = ys
|
||||
@@ -115,7 +115,7 @@ def num2sod(x):
|
||||
return frac * 86400
|
||||
|
||||
class Lohi:
|
||||
'''Time series online low and high detector.'''
|
||||
"""Time series online low and high detector."""
|
||||
def __init__(self, bias):
|
||||
assert(bias > 0)
|
||||
self.bias = bias
|
||||
@@ -127,14 +127,14 @@ class Lohi:
|
||||
self.highs = [ ]
|
||||
|
||||
def __call__(self, tick):
|
||||
'''Add extended tick to the max min parser.
|
||||
"""Add extended tick to the max min parser.
|
||||
|
||||
@param tick: The value of the current tick.
|
||||
@type tick: tuple(cdt, last)
|
||||
|
||||
@return: 1. Tick if new max min has been detected,
|
||||
2. None otherwise.
|
||||
'''
|
||||
"""
|
||||
n, cdt, last = tick
|
||||
res = None
|
||||
# automatic initialisation
|
||||
@@ -196,7 +196,7 @@ def find_lows_highs(xs, ys):
|
||||
|
||||
|
||||
class DelayedAcp:
|
||||
'''Time series max & min detector.'''
|
||||
"""Time series max & min detector."""
|
||||
def __init__(self, bias):
|
||||
assert(bias > 0)
|
||||
self.bias = bias
|
||||
@@ -207,14 +207,14 @@ class DelayedAcp:
|
||||
self.highs = [ ]
|
||||
|
||||
def __call__(self, tick):
|
||||
'''Add extended tick to the max min parser.
|
||||
"""Add extended tick to the max min parser.
|
||||
|
||||
@param tick: The value of the current tick.
|
||||
@type tick: tuple(n, cdt, last)
|
||||
|
||||
@return: 1. Tick if new max min has been detected,
|
||||
2. None otherwise.
|
||||
'''
|
||||
"""
|
||||
n, cdt, last = tick
|
||||
res = None
|
||||
# automatic initialisation
|
||||
@@ -253,68 +253,98 @@ class DelayedAcp:
|
||||
return (cmp(self.trend, 0), res)
|
||||
|
||||
|
||||
class TopDownLoHi:
|
||||
'''Douglas-Peucker algorithm.'''
|
||||
class SlidingWindow:
|
||||
"""Douglas-Peucker algorithm."""
|
||||
def __init__(self, bias):
|
||||
assert(bias > 0)
|
||||
self.bias = bias
|
||||
self.xs = [ ]
|
||||
self.ys = [ ]
|
||||
self.seg0 = 0
|
||||
self.lohis = [ ]
|
||||
self.lows = [ ]
|
||||
self.highs = [ ]
|
||||
self.segx = [ ]
|
||||
self.segy = [ ]
|
||||
self.types = [ ]
|
||||
self.bs = [ ]
|
||||
|
||||
def __call__(self, tick):
|
||||
'''Add extended tick to the max min parser.
|
||||
"""Add extended tick to the max min parser.
|
||||
|
||||
@param tick: The value of the current tick.
|
||||
@type tick: tuple(n, cdt, last)
|
||||
|
||||
@return: 1. Tick if new max min has been detected,
|
||||
2. None otherwise.
|
||||
'''
|
||||
"""
|
||||
n, cdt, last = tick
|
||||
max_distance = self.bias
|
||||
segment_added = False
|
||||
self.xs.append(cdt)
|
||||
self.ys.append(last)
|
||||
x0, y0 = (self.xs[0], self.ys[0])
|
||||
x1, y1 = (self.xs[-1], self.ys[-1])
|
||||
if n == 0:
|
||||
self.segx.append(x0)
|
||||
self.segy.append(y0)
|
||||
if len(self.xs) < 2:
|
||||
return None
|
||||
n0 = self.seg0
|
||||
n1 = len(self.xs)-1
|
||||
max_distance = self.bias
|
||||
x0, y0 = (self.xs[n0], self.ys[n0])
|
||||
x1, y1 = (self.xs[n1], self.ys[n1])
|
||||
if n1 > n0:
|
||||
# check distance
|
||||
coefs = interpolate_line((x0, x1), (y0, y1))
|
||||
ly2s = np.polyval(coefs, self.xs[n0:n1])
|
||||
lys = self.ys[n0:n1]
|
||||
ldiffs = np.absolute(lys - ly2s)
|
||||
if np.amax(ldiffs) > max_distance:
|
||||
for n, d in enumerate(ldiffs):
|
||||
if d > max_distance:
|
||||
n2 = n0 + n
|
||||
x2, y2 = (self.xs[n2], self.ys[n2])
|
||||
self.seg.set_data((x0, x2), (y0, y2))
|
||||
self.segs.append(self.seg)
|
||||
# start a new line segment
|
||||
self.n0 = n2
|
||||
x0, y0 = (self.xs[n0], self.ys[n0])
|
||||
coefs = interpolate_line((x0, x1), (y0, y1))
|
||||
self.seg, = self.ax1.plot_date((x0, x1), (y0, y1), 'k-')
|
||||
break
|
||||
|
||||
|
||||
return (self.segx, self.segy, segment_added)
|
||||
# check distance
|
||||
coefs = interpolate_line((x0, x1), (y0, y1))
|
||||
ip_ys = np.polyval(coefs, self.xs)
|
||||
d_ys = np.absolute(self.ys - ip_ys)
|
||||
d_max = np.amax(d_ys)
|
||||
if d_max > max_distance:
|
||||
n = np.argmax(d_ys)
|
||||
x2, y2 = (self.xs[n], self.ys[n])
|
||||
self.segx.append(x2)
|
||||
self.segy.append(y2)
|
||||
segment_added = True
|
||||
# store slope of segment
|
||||
b0, a0 = interpolate_line((x0, x2), (y0, y2))
|
||||
self.bs.append(b0)
|
||||
# remove ticks of previous segment
|
||||
del self.xs[0:n]
|
||||
del self.ys[0:n]
|
||||
# slope of current segment
|
||||
x0, y0 = (self.xs[0], self.ys[0])
|
||||
b1, a1 = interpolate_line((x0, x1), (y0, y1))
|
||||
self.add_type(b0, b1)
|
||||
return (self.segx + [x1], self.segy + [y1], segment_added)
|
||||
|
||||
def on_segment(self):
|
||||
''' calculate gearing
|
||||
def add_type(self, b0, b1):
|
||||
""" calculate gearing
|
||||
y: previous slope, x: current slope
|
||||
<0 ~0 >0
|
||||
<0 L L L
|
||||
~0 H 0 L
|
||||
>0 H H H
|
||||
'''
|
||||
pass
|
||||
"""
|
||||
if b0 < -SMALL and b1 < -SMALL and b0 > b1:
|
||||
type = "H"
|
||||
elif b0 < -SMALL and b1 < -SMALL and b0 < b1:
|
||||
type = "L"
|
||||
elif b0 < -SMALL and abs(b1) < SMALL:
|
||||
type = "L"
|
||||
elif b0 < -SMALL and b1 > SMALL:
|
||||
type = "L"
|
||||
elif abs(b0) < SMALL and b1 < -SMALL:
|
||||
type = "H"
|
||||
elif abs(b0) < SMALL and abs(b1) < SMALL:
|
||||
type = "0"
|
||||
elif abs(b0) < SMALL and b1 > SMALL:
|
||||
type = "L"
|
||||
elif b0 > SMALL and b1 < -SMALL:
|
||||
type = "H"
|
||||
elif b0 > SMALL and abs(b1) < SMALL:
|
||||
type = "H"
|
||||
elif b0 > SMALL and b1 > SMALL and b0 > b1:
|
||||
type = "H"
|
||||
elif b0 > SMALL and b1 > SMALL and b0 < b1:
|
||||
type = "L"
|
||||
else:
|
||||
type = "?"
|
||||
self.types.append(type)
|
||||
|
||||
|
||||
SMALL = 1E-10
|
||||
|
||||
|
||||
class Main:
|
||||
@@ -374,6 +404,7 @@ class Main:
|
||||
self.gs = [ 0 ] * len(self.xs)
|
||||
|
||||
self.mmh = Lohi(5)
|
||||
self.osw = SlidingWindow(5)
|
||||
|
||||
self.w0 = 0
|
||||
self.wd = 2000
|
||||
@@ -428,17 +459,12 @@ class Main:
|
||||
# prepare timeline window
|
||||
xr, yr, vr, sr, gr = self.tick_window(self.w0, self.wd)
|
||||
while self.low_high_crs < self.w0 + self.wd:
|
||||
self.mark_low_high(self.low_high_crs)
|
||||
self.lin_seg(self.low_high_crs)
|
||||
# self.mark_low_high(self.low_high_crs)
|
||||
self.mark_segments(self.low_high_crs)
|
||||
self.ma(self.low_high_crs, 10)
|
||||
self.low_high_crs += 1
|
||||
# update tick line
|
||||
self.tl.set_data(xr, yr)
|
||||
# upadte linear segment
|
||||
n0, n1 = (self.n0, self.low_high_crs)
|
||||
x0, y0 = (self.xs[n0], self.ys[n0])
|
||||
x1, y1 = (self.xs[n1], self.ys[n1])
|
||||
self.seg.set_data((x0, x1), (y0, y1))
|
||||
# update segment slope
|
||||
self.sl.set_data(xr, sr)
|
||||
# update volume line
|
||||
@@ -477,32 +503,30 @@ class Main:
|
||||
self.mas[n0] = np.average(self.ys[n0-min*60:n0])
|
||||
self.gs[n0] = self.ys[n0] - self.mas[n0] + self.ss[n0]
|
||||
|
||||
def lin_seg(self, n1):
|
||||
max_distance = 5
|
||||
n0 = self.n0
|
||||
x0, y0 = (self.xs[n0], self.ys[n0])
|
||||
x1, y1 = (self.xs[n1], self.ys[n1])
|
||||
self.seg.set_data((x0, x1), (y0, y1))
|
||||
if n1 > n0:
|
||||
# check distance
|
||||
coefs = interpolate_line((x0, x1), (y0, y1))
|
||||
ly2s = np.polyval(coefs, self.xs[n0:n1])
|
||||
self.ss[n1] = coefs[0] * ONE_MINUTE
|
||||
lys = self.ys[n0:n1]
|
||||
ldiffs = np.absolute(lys - ly2s)
|
||||
if np.amax(ldiffs) > max_distance:
|
||||
for n, d in enumerate(ldiffs):
|
||||
if d > max_distance:
|
||||
n2 = n0 + n
|
||||
x2, y2 = (self.xs[n2], self.ys[n2])
|
||||
self.seg.set_data((x0, x2), (y0, y2))
|
||||
self.segs.append(self.seg)
|
||||
# start a new line segment
|
||||
self.n0 = n2
|
||||
x0, y0 = (self.xs[n0], self.ys[n0])
|
||||
coefs = interpolate_line((x0, x1), (y0, y1))
|
||||
self.seg, = self.ax1.plot_date((x0, x1), (y0, y1), 'k-')
|
||||
break
|
||||
def mark_segments(self, n):
|
||||
x = self.xs
|
||||
y = self.ys
|
||||
segx, segy, seg_add = self.osw((n, x[n], y[n]))
|
||||
self.seg.set_data(segx, segy)
|
||||
if seg_add:
|
||||
text = self.osw.types[-1]
|
||||
if text == "H":
|
||||
fc = "green"
|
||||
dy = +15
|
||||
elif text == "L":
|
||||
fc = "red"
|
||||
dy = -15
|
||||
else:
|
||||
fc = "blue"
|
||||
dy = +15
|
||||
self.ax1.annotate(text,
|
||||
xy=(segx[-2], segy[-2]),
|
||||
xytext=(segx[-1], segy[-2]+dy),
|
||||
arrowprops=dict(facecolor=fc,
|
||||
frac=0.3,
|
||||
shrink=0.1))
|
||||
|
||||
|
||||
|
||||
def mark_low_high(self, n):
|
||||
x = self.xs
|
||||
|
||||
Reference in New Issue
Block a user