diff --git a/mpl/fibionacci2.py b/mpl/fibionacci2.py index 27b27f7..ec7896d 100644 --- a/mpl/fibionacci2.py +++ b/mpl/fibionacci2.py @@ -169,28 +169,6 @@ class Lohi: return None -class Acp: - """Always correct predictor""" - def __init__(self, lows, highs): - self.lows = lows - self.highs = highs - - def __call__(self, tick): - """Always correct predictor. - - Requires previous run of DelayedAcp to determine lows and highs. - - @param tick: The value of the current tick. - @type tick: tuple(n, cdt, last) - - @return: 1. Tick if new max min has been detected, - 2. None otherwise. - """ - n, cdt, last = tick - res = None - return res - - def find_lows_highs(xs, ys): dacp = DelayedAcp(10) for tick in zip(range(len(xs)), xs, ys): @@ -222,13 +200,13 @@ class DelayedAcp: res = None # automatic initialisation if self.mm0 is None: - # initalise water mark + # initialise water mark self.mm0 = tick res = self.mm0 self.lows = [(n, cdt, last - 1)] self.highs = [(n, cdt, last + 1)] else: - # initalise trend until price has changed + # initialise trend until price has changed if self.trend is None or self.trend == 0: self.trend = cmp(last, self.mm0[2]) # check for max diff --git a/mpl/fibionacci3.py b/mpl/fibionacci3.py new file mode 100644 index 0000000..f714e6e --- /dev/null +++ b/mpl/fibionacci3.py @@ -0,0 +1,420 @@ +# Copyright (c) 2008 Andreas Balogh +# See LICENSE for details. + +""" animated drawing of ticks + + using self.canvas embedded in Tk application + + Fibionacci retracements of 61.8, 50.0, 38.2, 23.6 % of min and max +""" + +# system imports + +import datetime +import os +import re +import logging +import warnings +import math + +import Tkinter as Tk +import numpy as np + +import matplotlib +matplotlib.use('TkAgg') + +from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg +import matplotlib.pyplot as plt +import matplotlib.dates as mdates +from matplotlib.dates import date2num + +# local imports + +# constants + +ONE_MINUTE = 60. / 86400. +LOW, NONE, HIGH = range(-1, 2) + +# globals + +LOG = logging.getLogger() + +logging.basicConfig(level=logging.DEBUG, + format='%(asctime)s.%(msecs)03i %(levelname).4s %(process)d:%(thread)d %(message)s', + datefmt='%H:%M:%S') + +MDF_REO = re.compile("(..):(..):(..)\.*(\d+)*") + + +def tdl(tick_date): + """ returns a list of tick tuples (cdt, last) for specified day """ + fiid = "846900" + year = tick_date.strftime("%Y") + yyyymmdd = tick_date.strftime("%Y%m%d") + filename = "%s.csv" % (fiid) + filepath = os.path.join("c:\\rttrd-prd-var\\consors-mdf\\data", year, yyyymmdd, filename) + x = [ ] + y = [ ] + fh = open(filepath, "r") + try: + prev_last = "" + for line in fh: + flds = line.split(",") + # determine file version + if flds[2] == "LAST": + last = float(flds[3]) + vol = float(flds[4]) + else: + last = float(flds[4]) + vol = 0.0 + # skip ticks with same last price + if prev_last == last: + continue + else: + prev_last = last + # parse time + mobj = MDF_REO.match(flds[0]) + if mobj is None: + raise ValueError("no match for [%s]" % (flds[0],)) + (hh, mm, ss, ms) = mobj.groups() + if ms: + c_time = datetime.time(int(hh), int(mm), int(ss), int(ms) * 1000) + else: + c_time = datetime.time(int(hh), int(mm), int(ss)) + cdt = datetime.datetime.combine(tick_date, c_time) + x.append(date2num(cdt)) + y.append(last) + finally: + fh.close() + # throw away first line of file (close price from previous day) + del x[0] + del y[0] + return (x, y) + +def num2sod(x): + frac, integ = math.modf(x) + return frac * 86400 + +class Lohi: + """Time series online low and high detector.""" + def __init__(self, bias): + assert(bias > 0) + self.bias = bias + self.low0 = None + self.high0 = None + self.prev_lohi = NONE + self.lohis = [ ] + self.lows = [ ] + self.highs = [ ] + + def __call__(self, tick): + """Add extended tick to the max min parser. + + @param tick: The value of the current tick. + @type tick: tuple(cdt, last) + + @return: 1. Tick if new max min has been detected, + 2. None otherwise. + """ + n, cdt, last = tick + res = None + # automatic initialisation + if self.low0 is None: + self.low0 = tick + self.lows.append((n, cdt, last - 1)) + if self.high0 is None: + self.high0 = tick + self.highs.append((n, cdt, last + 1)) + if last > self.high0[2]: + self.high0 = tick + if self.prev_lohi == NONE: + if self.high0[2] > self.low0[2] + self.bias: + res = self.high0 + self.low0 = self.high0 + self.lows.append(self.high0) + self.lohis.append(self.high0) + self.prev_lohi = HIGH + if last < self.low0[2]: + self.low0 = tick + if self.prev_lohi == NONE: + if self.low0[2] < self.high0[2] - self.bias: + res = self.low0 + self.high0 = self.low0 + self.lows.append(self.low0) + self.lohis.append(self.low0) + self.prev_lohi = LOW + if self.high0[1] < cdt - ONE_MINUTE and \ + ((self.prev_lohi == LOW and \ + self.high0[2] > self.lows[-1][2] + self.bias) or + (self.prev_lohi == HIGH and \ + self.high0[2] > self.highs[-1][2])): + res = self.high0 + self.low0 = self.high0 + self.highs.append(self.high0) + self.lohis.append(self.high0) + self.prev_lohi = HIGH + if self.low0[1] < cdt - ONE_MINUTE and \ + ((self.prev_lohi == LOW and \ + self.low0[2] < self.lows[-1][2]) or + (self.prev_lohi == HIGH and \ + self.low0[2] < self.highs[-1][2] - self.bias)): + res = self.low0 + self.high0 = self.low0 + self.lows.append(self.low0) + self.lohis.append(self.low0) + self.prev_lohi = LOW + if res: + return (self.prev_lohi, res) + else: + return None + + +def find_lows_highs(xs, ys): + dacp = DelayedAcp(10) + for tick in zip(range(len(xs)), xs, ys): + dacp(tick) + return dacp.lows, dacp.highs + + +class DelayedAcp: + """Time series max & min detector.""" + def __init__(self, bias): + assert(bias > 0) + self.bias = bias + self.trend = None + self.mm0 = None + self.lohis = [ ] + self.lows = [ ] + self.highs = [ ] + + def __call__(self, tick): + """Add extended tick to the max min parser. + + @param tick: The value of the current tick. + @type tick: tuple(n, cdt, last) + + @return: 1. Tick if new max min has been detected, + 2. None otherwise. + """ + n, cdt, last = tick + res = None + # automatic initialisation + if self.mm0 is None: + # initialise water mark + self.mm0 = tick + res = self.mm0 + self.lows = [(n, cdt, last - 1)] + self.highs = [(n, cdt, last + 1)] + else: + # initialise trend until price has changed + if self.trend is None or self.trend == 0: + self.trend = cmp(last, self.mm0[2]) + # check for max + if self.trend > 0: + if last > self.mm0[2]: + self.mm0 = tick + if last < self.mm0[2] - self.bias: + self.lohis.append(self.mm0) + self.highs.append(self.mm0) + res = self.mm0 + # revert trend & water mark + self.mm0 = tick + self.trend = -1 + # check for min + if self.trend < 0: + if last < self.mm0[2]: + self.mm0 = tick + if last > self.mm0[2] + self.bias: + self.lohis.append(self.mm0) + self.lows.append(self.mm0) + res = self.mm0 + # revert trend & water mark + self.mm0 = tick + self.trend = +1 + return (cmp(self.trend, 0), res) + + +class Main: + def __init__(self): + warnings.simplefilter("default", np.RankWarning) + self.ylow = None + self.yhigh = None + self.advance_count = 1 + + self.root = Tk.Tk() + self.root.wm_title("Embedding in TK") + + # create plot + fig = plt.figure() + self.ax1 = fig.add_subplot(211) # ticks + self.ax2 = fig.add_subplot(212) # diff from polyfit + # ax3 = fig.add_subplot(313) # cash + + self.ax1.set_ylabel("ticks") + self.ax2.set_ylabel("polyfit diff") + # ax3.set_ylabel("cash") + + major_fmt = mdates.DateFormatter('%H:%M:%S') + self.ax1.xaxis.set_major_formatter(major_fmt) + self.ax1.format_xdata = major_fmt + self.ax1.format_ydata = lambda x: '%1.2f' % x + self.ax1.grid(True) + + self.ax2.xaxis.set_major_formatter(major_fmt) + self.ax2.format_xdata = major_fmt + self.ax2.format_ydata = lambda x: '%1.2f' % x + self.ax2.grid(True) + + # rotates and right aligns the x labels, and moves the bottom of the + # axes up to make room for them + fig.autofmt_xdate() + + # create artists + LOG.debug("Loading ticks...") + self.x, self.y = tdl(datetime.datetime(2009, 6, 3)) + LOG.debug("Ticks loaded.") + lows, highs = find_lows_highs(self.x, self.y) + + self.mmh = Lohi(10) + + self.w0 = 0 + self.wd = 1000 + self.low_high_crs = 0 + xr, yr = self.tick_window(self.w0, self.wd) + fit = np.average(yr) + + self.tl, = self.ax1.plot_date(xr, yr, '-') + self.fl, = self.ax1.plot_date(xr, (fit,) * len(xr), 'k--') + self.mh, = self.ax1.plot_date(xr, (yr[0],) * len(xr), 'g:') + self.ml, = self.ax1.plot_date(xr, (yr[0],) * len(xr), 'r:') + # Acp markers + self.him, = self.ax1.plot_date([x for n, x, y in lows], [y for n, x, y in lows], 'go') + self.lom, = self.ax1.plot_date([x for n, x, y in highs], [y for n, x, y in highs], 'ro') + + self.dl, = self.ax2.plot_date(xr, (0,) * len(xr), '-') + + self.set_axis(xr, yr) + + # embed canvas in Tk + self.canvas = FigureCanvasTkAgg(fig, master=self.root) + self.canvas.draw() + self.canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=Tk.TRUE) + + # toolbar = NavigationToolbar2TkAgg( self.canvas, self.root ) + # toolbar.update() + # self.canvas._tkself.canvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) + + fr1 = Tk.Frame(master=self.root) + bu1 = Tk.Button(master=fr1, text='Quit', command=self.root.quit) + bu2 = Tk.Button(master=fr1, text='Stop', command=self.stop) + bu3 = Tk.Button(master=fr1, text='Resume', command=self.resume) + bu4 = Tk.Button(master=fr1, text='1x', command=self.times_one) + bu5 = Tk.Button(master=fr1, text='5x', command=self.times_five) + bu6 = Tk.Button(master=fr1, text='10x', command=self.times_ten) + bu1.pack(side=Tk.RIGHT, padx=5, pady=5) + bu6.pack(side=Tk.RIGHT, padx=5, pady=5) + bu5.pack(side=Tk.RIGHT, padx=5, pady=5) + bu4.pack(side=Tk.RIGHT, padx=5, pady=5) + bu2.pack(side=Tk.RIGHT, padx=5, pady=5) + bu3.pack(side=Tk.RIGHT, padx=5, pady=5) + fr1.pack(side=Tk.BOTTOM) + + + def animate(self): + self.w0 += self.advance_count + # prepare timeline window + xr, yr = self.tick_window(self.w0, self.wd) + while self.low_high_crs < self.w0 + self.wd: + self.mark_low_high(self.low_high_crs) + self.low_high_crs += 1 + # build polynomial fit + lohis = self.mmh.lohis + if len(lohis) >= 4: + n0, x0, y0 = lohis[-4] + n1, x1, y1 = lohis[-1] + x2 = xr[-1] + coefs = np.polyfit([num2sod(x) for n, x, y in lohis[-4:]], [y for n, x, y in lohis[-4:]], 1) + self.fl.set_data((x0, x2), [np.polyval(coefs, num2sod(x)) for x in (x0, x2)]) + # width of trend channel + mx = 0 + for n in range(n0, n1): + mx = max(mx, math.fabs(np.polyval(coefs, num2sod(self.x[n])) - self.y[n])) + a, b = coefs + self.mh.set_data((x0, x2), [np.polyval((a, b+mx), num2sod(x)) for x in (x0, x2)]) + self.ml.set_data((x0, x2), [np.polyval((a, b-mx), num2sod(x)) for x in (x0, x2)]) + # update tick line + self.tl.set_data(xr, yr) + # update axis + self.set_axis(xr, yr) + self.canvas.draw() + if self.w0 < len(self.x) - self.wd - 1: + self.after_id = self.root.after(10, self.animate) + + def set_axis(self, xr, yr, bias=50): + if self.ylow is None: + self.ylow = yr[0] - bias / 2 + self.yhigh = yr[0] + bias / 2 + for y in yr: + if y < self.ylow: + self.ylow = y + self.yhigh = self.ylow + bias + if y > self.yhigh: + self.yhigh = y + self.ylow = self.yhigh - bias + self.ax1.axis([xr[0], xr[-1], self.ylow, self.yhigh]) + self.ax2.axis([xr[0], xr[-1], -25, +25]) + + def tick_window(self, w0, wd = 1000): + return (self.x[w0:w0 + wd], self.y[w0:w0 + wd]) + + def mark_low_high(self, n): + x = self.x + y = self.y + rc = self.mmh((n, x[n], y[n])) + if rc: + lohi, tick = rc + nlh, xlh, ylh = tick + if lohi < 0: + # low + self.ax1.annotate('low', + xy=(x[nlh], y[nlh]), + xytext=(x[n], y[nlh]), + arrowprops=dict(facecolor='red', + frac=0.3, + shrink=0.1)) + elif lohi > 0: + # high + self.ax1.annotate('high', + xy=(x[nlh], y[nlh]), + xytext=(x[n], y[nlh]), + arrowprops=dict(facecolor='green', + frac=0.3, + shrink=0.1)) + + def stop(self): + if self.after_id: + self.root.after_cancel(self.after_id) + self.after_id = None + + def resume(self): + if self.after_id is None: + self.after_id = self.root.after(10, self.animate) + + def times_one(self): + self.advance_count = 1 + + def times_five(self): + self.advance_count = 5 + + def times_ten(self): + self.advance_count = 10 + + def run(self): + self.root.after(500, self.animate) + self.root.mainloop() + self.root.destroy() + + +if __name__ == "__main__": + app = Main() + app.run()