# Copyright (c) 2008 Andreas Balogh # See LICENSE for details. """ patterns and distance A. collect data 1. one tick every minute 10-20 mins back 2. use LoHi max until market close as performance indicator B. cluster and analyse data according to distance 1. find clusters with net positive P&L. many clusters will exhibit useless patterns C. check performance with backtest """ # system imports import datetime import os import re import logging import warnings import math import Tkinter as Tk import numpy as np import matplotlib matplotlib.use('TkAgg') from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg import matplotlib.pyplot as plt import matplotlib.dates as mdates from matplotlib.dates import date2num # local imports from globals import * # constants ONE_MINUTE = 60. / 86400. LOW, NONE, HIGH = range(-1, 2) # globals LOG = logging.getLogger() logging.basicConfig(level=logging.DEBUG, format='%(asctime)s.%(msecs)03i %(levelname).4s %(process)d:%(thread)d %(message)s', datefmt='%H:%M:%S') MDF_REO = re.compile("(..):(..):(..)\.*(\d+)*") def tdl(tick_date): """ returns a list of tick tuples (cdt, last) for specified day """ fiid = "846900" year = tick_date.strftime("%Y") yyyymmdd = tick_date.strftime("%Y%m%d") filename = "%s.csv" % (fiid) filepath = os.path.join(RTTRD_VAR, "consors-mdf\\data", year, yyyymmdd, filename) x = [ ] y = [ ] v = [ ] fh = open(filepath, "r") try: prev_last = "" for line in fh: flds = line.split(",") # determine file version if flds[2] == "LAST": last = float(flds[3]) vol = float(flds[4]) else: last = float(flds[4]) vol = 0.0 # skip ticks with same last price if prev_last == last: continue else: prev_last = last # parse time mobj = MDF_REO.match(flds[0]) if mobj is None: raise ValueError("no match for [%s]" % (flds[0],)) (hh, mm, ss, ms) = mobj.groups() if ms: c_time = datetime.time(int(hh), int(mm), int(ss), int(ms) * 1000) else: c_time = datetime.time(int(hh), int(mm), int(ss)) cdt = datetime.datetime.combine(tick_date, c_time) x.append(date2num(cdt)) y.append(last) v.append(vol) finally: fh.close() # throw away first line of file (close price from previous day) del x[0] del y[0] del v[0] return (x, y, v) def num2sod(x): frac, integ = math.modf(x) return frac * 86400 class Lohi: """Time series online low and high detector.""" def __init__(self, bias): assert(bias > 0) self.bias = bias self.low0 = None self.high0 = None self.prev_lohi = NONE self.lohis = [ ] self.lows = [ ] self.highs = [ ] def __call__(self, tick): """Add extended tick to the max min parser. @param tick: The value of the current tick. @type tick: tuple(cdt, last) @return: 1. Tick if new max min has been detected, 2. None otherwise. """ n, cdt, last = tick res = None # automatic initialisation if self.low0 is None: self.low0 = tick self.lows.append((n, cdt, last - 1)) if self.high0 is None: self.high0 = tick self.highs.append((n, cdt, last + 1)) if last > self.high0[2]: self.high0 = tick if self.prev_lohi == NONE: if self.high0[2] > self.low0[2] + self.bias: res = self.high0 self.low0 = self.high0 self.lows.append(self.high0) self.lohis.append(self.high0) self.prev_lohi = HIGH if last < self.low0[2]: self.low0 = tick if self.prev_lohi == NONE: if self.low0[2] < self.high0[2] - self.bias: res = self.low0 self.high0 = self.low0 self.lows.append(self.low0) self.lohis.append(self.low0) self.prev_lohi = LOW if self.high0[1] < cdt - ONE_MINUTE and \ ((self.prev_lohi == LOW and \ self.high0[2] > self.lows[-1][2] + self.bias) or (self.prev_lohi == HIGH and \ self.high0[2] > self.highs[-1][2])): res = self.high0 self.low0 = self.high0 self.highs.append(self.high0) self.lohis.append(self.high0) self.prev_lohi = HIGH if self.low0[1] < cdt - ONE_MINUTE and \ ((self.prev_lohi == LOW and \ self.low0[2] < self.lows[-1][2]) or (self.prev_lohi == HIGH and \ self.low0[2] < self.highs[-1][2] - self.bias)): res = self.low0 self.high0 = self.low0 self.lows.append(self.low0) self.lohis.append(self.low0) self.prev_lohi = LOW if res: return (self.prev_lohi, res) else: return None def find_lows_highs(xs, ys): dacp = DelayedAcp(10) for tick in zip(range(len(xs)), xs, ys): dacp(tick) return dacp.lows, dacp.highs class DelayedAcp: """Time series max & min detector.""" def __init__(self, bias): assert(bias > 0) self.bias = bias self.trend = None self.mm0 = None self.lohis = [ ] self.lows = [ ] self.highs = [ ] def __call__(self, tick): """Add extended tick to the max min parser. @param tick: The value of the current tick. @type tick: tuple(n, cdt, last) @return: 1. Tick if new max min has been detected, 2. None otherwise. """ n, cdt, last = tick res = None # automatic initialisation if self.mm0 is None: # initialise water mark self.mm0 = tick res = self.mm0 self.lows = [(n, cdt, last - 1)] self.highs = [(n, cdt, last + 1)] else: # initialise trend until price has changed if self.trend is None or self.trend == 0: self.trend = cmp(last, self.mm0[2]) # check for max if self.trend > 0: if last > self.mm0[2]: self.mm0 = tick if last < self.mm0[2] - self.bias: self.lohis.append(self.mm0) self.highs.append(self.mm0) res = self.mm0 # revert trend & water mark self.mm0 = tick self.trend = -1 # check for min if self.trend < 0: if last < self.mm0[2]: self.mm0 = tick if last > self.mm0[2] + self.bias: self.lohis.append(self.mm0) self.lows.append(self.mm0) res = self.mm0 # revert trend & water mark self.mm0 = tick self.trend = +1 return (cmp(self.trend, 0), res) def harvest_patterns(): pass def analyse_patterns(): pass class Main: def __init__(self): warnings.simplefilter("default", np.RankWarning) self.advance_count = 1 self.ylow = None self.yhigh = None self.fiblo = None self.fibhi = None self.fibs = None self.root = Tk.Tk() self.root.wm_title("Embedding in TK") # create plot fig = plt.figure() self.ax1 = fig.add_subplot(211) # ticks self.ax2 = fig.add_subplot(212) # volume # ax3 = fig.add_subplot(313) # cash self.ax1.set_ylabel("ticks") self.ax2.set_ylabel("volume") # ax3.set_ylabel("cash") major_fmt = mdates.DateFormatter('%H:%M:%S') major_loc = mdates.MinuteLocator(byminute = range(0, 60, 10)) minor_loc = mdates.MinuteLocator() self.ax1.xaxis.set_major_formatter(major_fmt) self.ax1.xaxis.set_major_locator(major_loc) self.ax1.xaxis.set_minor_locator(minor_loc) self.ax1.format_xdata = major_fmt self.ax1.format_ydata = lambda x: '%1.2f' % x self.ax1.grid(True) self.ax2.xaxis.set_major_formatter(major_fmt) self.ax2.xaxis.set_major_locator(mdates.MinuteLocator(byminute = range(0, 60, 10))) self.ax2.xaxis.set_minor_locator(mdates.MinuteLocator()) self.ax2.format_xdata = major_fmt self.ax2.format_ydata = lambda x: '%1.2f' % x self.ax2.grid(True) # rotates and right aligns the x labels, and moves the bottom of the # axes up to make room for them fig.autofmt_xdate() # create artists LOG.debug("Loading ticks...") self.xs, self.ys, self.vs = tdl(datetime.datetime(2009, 6, 25)) LOG.debug("Ticks loaded.") lows, highs = find_lows_highs(self.xs, self.ys) self.mmh = Lohi(5) self.w0 = 0 self.wd = 2000 self.low_high_crs = 0 xr, yr, vr = self.tick_window(self.w0, self.wd) self.fiblo = self.fibhi = (0, self.xs[0], self.ys[0]) fit = np.average(yr) self.tl, = self.ax1.plot_date(xr, yr, '-') self.fl, = self.ax1.plot_date(xr, (fit,) * len(xr), 'k--') self.mh, = self.ax1.plot_date(xr, (yr[0],) * len(xr), 'k-') self.ml, = self.ax1.plot_date(xr, (yr[0],) * len(xr), 'k-') # Acp markers self.him, = self.ax1.plot_date([x for n, x, y in lows], [y for n, x, y in lows], 'go') self.lom, = self.ax1.plot_date([x for n, x, y in highs], [y for n, x, y in highs], 'ro') self.dl, = self.ax2.plot_date(xr, vr, '-') self.set_axis(xr, yr) # embed canvas in Tk self.canvas = FigureCanvasTkAgg(fig, master=self.root) self.canvas.draw() self.canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=Tk.TRUE) # toolbar = NavigationToolbar2TkAgg( self.canvas, self.root ) # toolbar.update() # self.canvas._tkself.canvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) fr1 = Tk.Frame(master=self.root) bu1 = Tk.Button(master=fr1, text='Quit', command=self.root.quit) bu2 = Tk.Button(master=fr1, text='Stop', command=self.stop) bu4 = Tk.Button(master=fr1, text='1x', command=self.times_one) bu5 = Tk.Button(master=fr1, text='5x', command=self.times_five) bu6 = Tk.Button(master=fr1, text='10x', command=self.times_ten) bu1.pack(side=Tk.RIGHT, padx=5, pady=5) bu6.pack(side=Tk.RIGHT, padx=5, pady=5) bu5.pack(side=Tk.RIGHT, padx=5, pady=5) bu4.pack(side=Tk.RIGHT, padx=5, pady=5) bu2.pack(side=Tk.RIGHT, padx=5, pady=5) fr1.pack(side=Tk.BOTTOM) def animate(self): self.w0 += self.advance_count # prepare timeline window xr, yr, vr = self.tick_window(self.w0, self.wd) while self.low_high_crs < self.w0 + self.wd: self.mark_low_high(self.low_high_crs) self.fib_low_high(self.low_high_crs) self.low_high_crs += 1 # build polynomial fit lohis = self.mmh.lohis if len(lohis) >= 4: n0, x0, y0 = lohis[-4] n1, x1, y1 = lohis[-1] x2 = xr[-1] coefs = np.polyfit([num2sod(x) for n, x, y in lohis[-4:]], [y for n, x, y in lohis[-4:]], 1) self.fl.set_data((x0, x2), [np.polyval(coefs, num2sod(x)) for x in (x0, x2)]) # width of trend channel mx = 0 for n in range(n0, n1): mx = max(mx, math.fabs(np.polyval(coefs, num2sod(self.xs[n])) - self.ys[n])) a, b = coefs self.mh.set_data((x0, x2), [np.polyval((a, b+mx), num2sod(x)) for x in (x0, x2)]) self.ml.set_data((x0, x2), [np.polyval((a, b-mx), num2sod(x)) for x in (x0, x2)]) # update tick line self.tl.set_data(xr, yr) self.dl.set_data(xr, vr) # update axis self.set_axis(xr, yr) self.canvas.draw() if self.w0 < len(self.xs) - self.wd - 1: self.after_id = self.root.after(10, self.animate) def set_axis(self, xr, yr, bias=50): if self.ylow is None: self.ylow = yr[0] - bias / 2 self.yhigh = yr[0] + bias / 2 for y in yr: if y < self.ylow: self.ylow = y self.yhigh = self.ylow + bias if y > self.yhigh: self.yhigh = y self.ylow = self.yhigh - bias self.ax1.axis([xr[0], xr[-1], self.ylow, self.yhigh]) self.ax2.axis([xr[0], xr[-1], 0, 50000]) def tick_window(self, w0, wd = 1000): return (self.xs[w0:w0 + wd], self.ys[w0:w0 + wd], self.vs[w0:w0 + wd]) def fib_low_high(self, n): tick = (n, self.xs[n], self.ys[n]) redraw = False n, x, y = tick hin, hix, hiy = self.fibhi lon, lox, loy = self.fiblo delta = hiy - loy # 61.8, 50.0, 38.2, 23.6 % y61 = loy + delta * 0.618 y50 = loy + delta * 0.50 y38 = loy + delta * 0.382 y23 = loy + delta * 0.236 if y < self.fiblo[2]: self.fiblo = tick if y > self.fibhi[2]: self.fibhi = tick if self.fibs is not None: if lox > hix and y > y50: self.fibs = None self.fibhi = tick if lox < hix and y < y50: self.fibs = None self.fiblo = tick # create fib lines if lo hi differs more than 10 pts if delta > 10: xr = (min(lox, hix), x) if self.fibs is None: l100, = self.ax1.plot_date(xr, (hiy, hiy), 'r-') l61, = self.ax1.plot_date(xr, (y61, y61), 'r--') l50, = self.ax1.plot_date(xr, (y50, y50), 'r--') l38, = self.ax1.plot_date(xr, (y38, y38), 'r--') l23, = self.ax1.plot_date(xr, (y23, y23), 'r--') l0, = self.ax1.plot_date(xr, (loy, loy), 'r-') self.fibs = (l100, l61, l50, l38, l23, l0) else: l100, l61, l50, l38, l23, l0 = self.fibs l100.set_data(xr, (hiy, hiy)) l61.set_data(xr, (y61, y61)) l50.set_data(xr, (y50, y50)) l38.set_data(xr, (y38, y38)) l23.set_data(xr, (y23, y23)) l0.set_data(xr, (loy, loy)) def mark_low_high(self, n): x = self.xs y = self.ys rc = self.mmh((n, x[n], y[n])) if rc: lohi, tick = rc nlh, xlh, ylh = tick if lohi < 0: # low self.ax1.annotate('low', xy=(x[nlh], y[nlh]), xytext=(x[n], y[nlh]), arrowprops=dict(facecolor='red', frac=0.3, shrink=0.1)) elif lohi > 0: # high self.ax1.annotate('high', xy=(x[nlh], y[nlh]), xytext=(x[n], y[nlh]), arrowprops=dict(facecolor='green', frac=0.3, shrink=0.1)) def stop(self): if self.after_id: self.root.after_cancel(self.after_id) self.after_id = None def resume(self): if self.after_id is None: self.after_id = self.root.after(10, self.animate) def times_one(self): self.advance_count = 1 self.resume() def times_five(self): self.advance_count = 5 self.resume() def times_ten(self): self.advance_count = 10 self.resume() def run(self): self.root.after(500, self.animate) self.root.mainloop() self.root.destroy() if __name__ == "__main__": app = Main() app.run()