445 lines
15 KiB
Python
445 lines
15 KiB
Python
# Copyright (c) 2008 Andreas Balogh
|
|
# See LICENSE for details.
|
|
|
|
""" animated drawing of ticks
|
|
|
|
using self.canvas embedded in Tk application
|
|
|
|
Fibionacci retracements of 61.8, 50.0, 38.2, 23.6 % of min and max
|
|
"""
|
|
|
|
# system imports
|
|
|
|
import datetime
|
|
import os
|
|
import re
|
|
import logging
|
|
import warnings
|
|
import math
|
|
|
|
import Tkinter as Tk
|
|
import numpy as np
|
|
|
|
import matplotlib
|
|
matplotlib.use('TkAgg')
|
|
|
|
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.dates as mdates
|
|
from matplotlib.dates import date2num
|
|
|
|
# local imports
|
|
|
|
# constants
|
|
|
|
ONE_MINUTE = 60. / 86400.
|
|
LOW, NONE, HIGH = range(-1, 2)
|
|
|
|
# globals
|
|
|
|
LOG = logging.getLogger()
|
|
|
|
logging.basicConfig(level=logging.DEBUG,
|
|
format='%(asctime)s.%(msecs)03i %(levelname).4s %(process)d:%(thread)d %(message)s',
|
|
datefmt='%H:%M:%S')
|
|
|
|
MDF_REO = re.compile("(..):(..):(..)\.*(\d+)*")
|
|
|
|
|
|
def tdl(tick_date):
|
|
""" returns a list of tick tuples (cdt, last) for specified day """
|
|
fiid = "846900"
|
|
year = tick_date.strftime("%Y")
|
|
yyyymmdd = tick_date.strftime("%Y%m%d")
|
|
filename = "%s.csv" % (fiid)
|
|
filepath = os.path.join("c:\\rttrd-prd-var\\consors-mdf\\data", year, yyyymmdd, filename)
|
|
x = [ ]
|
|
y = [ ]
|
|
fh = open(filepath, "r")
|
|
try:
|
|
prev_last = ""
|
|
for line in fh:
|
|
flds = line.split(",")
|
|
# determine file version
|
|
if flds[2] == "LAST":
|
|
last = float(flds[3])
|
|
vol = float(flds[4])
|
|
else:
|
|
last = float(flds[4])
|
|
vol = 0.0
|
|
# skip ticks with same last price
|
|
if prev_last == last:
|
|
continue
|
|
else:
|
|
prev_last = last
|
|
# parse time
|
|
mobj = MDF_REO.match(flds[0])
|
|
if mobj is None:
|
|
raise ValueError("no match for [%s]" % (flds[0],))
|
|
(hh, mm, ss, ms) = mobj.groups()
|
|
if ms:
|
|
c_time = datetime.time(int(hh), int(mm), int(ss), int(ms) * 1000)
|
|
else:
|
|
c_time = datetime.time(int(hh), int(mm), int(ss))
|
|
cdt = datetime.datetime.combine(tick_date, c_time)
|
|
x.append(date2num(cdt))
|
|
y.append(last)
|
|
finally:
|
|
fh.close()
|
|
# throw away first line of file (close price from previous day)
|
|
del x[0]
|
|
del y[0]
|
|
return (x, y)
|
|
|
|
def num2sod(x):
|
|
frac, integ = math.modf(x)
|
|
return frac * 86400
|
|
|
|
class Lohi:
|
|
"""Time series online low and high detector."""
|
|
def __init__(self, bias):
|
|
assert(bias > 0)
|
|
self.bias = bias
|
|
self.low0 = None
|
|
self.high0 = None
|
|
self.prev_lohi = NONE
|
|
self.lohis = [ ]
|
|
self.lows = [ ]
|
|
self.highs = [ ]
|
|
|
|
def __call__(self, tick):
|
|
"""Add extended tick to the max min parser.
|
|
|
|
@param tick: The value of the current tick.
|
|
@type tick: tuple(cdt, last)
|
|
|
|
@return: 1. Tick if new max min has been detected,
|
|
2. None otherwise.
|
|
"""
|
|
n, cdt, last = tick
|
|
res = None
|
|
# automatic initialisation
|
|
if self.low0 is None:
|
|
self.low0 = tick
|
|
self.lows.append((n, cdt, last - 1))
|
|
if self.high0 is None:
|
|
self.high0 = tick
|
|
self.highs.append((n, cdt, last + 1))
|
|
if last > self.high0[2]:
|
|
self.high0 = tick
|
|
if self.prev_lohi == NONE:
|
|
if self.high0[2] > self.low0[2] + self.bias:
|
|
res = self.high0
|
|
self.low0 = self.high0
|
|
self.lows.append(self.high0)
|
|
self.lohis.append(self.high0)
|
|
self.prev_lohi = HIGH
|
|
if last < self.low0[2]:
|
|
self.low0 = tick
|
|
if self.prev_lohi == NONE:
|
|
if self.low0[2] < self.high0[2] - self.bias:
|
|
res = self.low0
|
|
self.high0 = self.low0
|
|
self.lows.append(self.low0)
|
|
self.lohis.append(self.low0)
|
|
self.prev_lohi = LOW
|
|
if self.high0[1] < cdt - ONE_MINUTE and \
|
|
((self.prev_lohi == LOW and \
|
|
self.high0[2] > self.lows[-1][2] + self.bias) or
|
|
(self.prev_lohi == HIGH and \
|
|
self.high0[2] > self.highs[-1][2])):
|
|
res = self.high0
|
|
self.low0 = self.high0
|
|
self.highs.append(self.high0)
|
|
self.lohis.append(self.high0)
|
|
self.prev_lohi = HIGH
|
|
if self.low0[1] < cdt - ONE_MINUTE and \
|
|
((self.prev_lohi == LOW and \
|
|
self.low0[2] < self.lows[-1][2]) or
|
|
(self.prev_lohi == HIGH and \
|
|
self.low0[2] < self.highs[-1][2] - self.bias)):
|
|
res = self.low0
|
|
self.high0 = self.low0
|
|
self.lows.append(self.low0)
|
|
self.lohis.append(self.low0)
|
|
self.prev_lohi = LOW
|
|
if res:
|
|
return (self.prev_lohi, res)
|
|
else:
|
|
return None
|
|
|
|
|
|
class Acp:
|
|
"""Always correct predictor"""
|
|
def __init__(self, lows, highs):
|
|
self.lows = lows
|
|
self.highs = highs
|
|
|
|
def __call__(self, tick):
|
|
"""Always correct predictor.
|
|
|
|
Requires previous run of DelayedAcp to determine lows and highs.
|
|
|
|
@param tick: The value of the current tick.
|
|
@type tick: tuple(n, cdt, last)
|
|
|
|
@return: 1. Tick if new max min has been detected,
|
|
2. None otherwise.
|
|
"""
|
|
n, cdt, last = tick
|
|
res = None
|
|
return res
|
|
|
|
|
|
def find_lows_highs(xs, ys):
|
|
dacp = DelayedAcp(10)
|
|
for tick in zip(range(len(xs)), xs, ys):
|
|
dacp(tick)
|
|
return dacp.lows, dacp.highs
|
|
|
|
|
|
class DelayedAcp:
|
|
"""Time series max & min detector."""
|
|
def __init__(self, bias):
|
|
assert(bias > 0)
|
|
self.bias = bias
|
|
self.trend = None
|
|
self.mm0 = None
|
|
self.lohis = [ ]
|
|
self.lows = [ ]
|
|
self.highs = [ ]
|
|
|
|
def __call__(self, tick):
|
|
"""Add extended tick to the max min parser.
|
|
|
|
@param tick: The value of the current tick.
|
|
@type tick: tuple(n, cdt, last)
|
|
|
|
@return: 1. Tick if new max min has been detected,
|
|
2. None otherwise.
|
|
"""
|
|
n, cdt, last = tick
|
|
res = None
|
|
# automatic initialisation
|
|
if self.mm0 is None:
|
|
# initalise water mark
|
|
self.mm0 = tick
|
|
res = self.mm0
|
|
self.lows = [(n, cdt, last - 1)]
|
|
self.highs = [(n, cdt, last + 1)]
|
|
else:
|
|
# initalise trend until price has changed
|
|
if self.trend is None or self.trend == 0:
|
|
self.trend = cmp(last, self.mm0[2])
|
|
# check for max
|
|
if self.trend > 0:
|
|
if last > self.mm0[2]:
|
|
self.mm0 = tick
|
|
if last < self.mm0[2] - self.bias:
|
|
self.lohis.append(self.mm0)
|
|
self.highs.append(self.mm0)
|
|
res = self.mm0
|
|
# revert trend & water mark
|
|
self.mm0 = tick
|
|
self.trend = -1
|
|
# check for min
|
|
if self.trend < 0:
|
|
if last < self.mm0[2]:
|
|
self.mm0 = tick
|
|
if last > self.mm0[2] + self.bias:
|
|
self.lohis.append(self.mm0)
|
|
self.lows.append(self.mm0)
|
|
res = self.mm0
|
|
# revert trend & water mark
|
|
self.mm0 = tick
|
|
self.trend = +1
|
|
return (cmp(self.trend, 0), res)
|
|
|
|
|
|
class Main:
|
|
def __init__(self):
|
|
warnings.simplefilter("default", np.RankWarning)
|
|
self.ylow = None
|
|
self.yhigh = None
|
|
self.advance_count = 1
|
|
|
|
self.root = Tk.Tk()
|
|
self.root.wm_title("Embedding in TK")
|
|
|
|
# create plot
|
|
fig = plt.figure()
|
|
self.ax1 = fig.add_subplot(211) # ticks
|
|
self.ax2 = fig.add_subplot(212) # diff from polyfit
|
|
# ax3 = fig.add_subplot(313) # cash
|
|
|
|
self.ax1.set_ylabel("ticks")
|
|
self.ax2.set_ylabel("polyfit diff")
|
|
# ax3.set_ylabel("cash")
|
|
|
|
major_fmt = mdates.DateFormatter('%H:%M:%S')
|
|
self.ax1.xaxis.set_major_formatter(major_fmt)
|
|
self.ax1.format_xdata = major_fmt
|
|
self.ax1.format_ydata = lambda x: '%1.2f' % x
|
|
self.ax1.grid(True)
|
|
|
|
self.ax2.xaxis.set_major_formatter(major_fmt)
|
|
self.ax2.format_xdata = major_fmt
|
|
self.ax2.format_ydata = lambda x: '%1.2f' % x
|
|
self.ax2.grid(True)
|
|
|
|
# rotates and right aligns the x labels, and moves the bottom of the
|
|
# axes up to make room for them
|
|
fig.autofmt_xdate()
|
|
|
|
# create artists
|
|
LOG.debug("Loading ticks...")
|
|
self.x, self.y = tdl(datetime.datetime(2009, 6, 3))
|
|
LOG.debug("Ticks loaded.")
|
|
lows, highs = find_lows_highs(self.x, self.y)
|
|
|
|
self.mmh = Lohi(10)
|
|
|
|
self.w0 = 0
|
|
self.wd = 1000
|
|
self.low_high_crs = 0
|
|
xr, yr = self.tick_window(self.w0, self.wd)
|
|
fit = np.average(yr)
|
|
|
|
self.tl, = self.ax1.plot_date(xr, yr, '-')
|
|
self.fl, = self.ax1.plot_date(xr, (fit,) * len(xr), 'k--')
|
|
self.mh, = self.ax1.plot_date(xr, (yr[0],) * len(xr), 'g:')
|
|
self.ml, = self.ax1.plot_date(xr, (yr[0],) * len(xr), 'r:')
|
|
self.him, = self.ax1.plot_date([x for n, x, y in lows], [y for n, x, y in lows], 'go')
|
|
self.lom, = self.ax1.plot_date([x for n, x, y in highs], [y for n, x, y in highs], 'ro')
|
|
|
|
self.dl, = self.ax2.plot_date(xr, (0,) * len(xr), '-')
|
|
|
|
self.set_axis(xr, yr)
|
|
|
|
# embed canvas in Tk
|
|
self.canvas = FigureCanvasTkAgg(fig, master=self.root)
|
|
self.canvas.draw()
|
|
self.canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=Tk.TRUE)
|
|
|
|
# toolbar = NavigationToolbar2TkAgg( self.canvas, self.root )
|
|
# toolbar.update()
|
|
# self.canvas._tkself.canvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
|
|
|
|
fr1 = Tk.Frame(master=self.root)
|
|
bu1 = Tk.Button(master=fr1, text='Quit', command=self.root.quit)
|
|
bu2 = Tk.Button(master=fr1, text='Stop', command=self.stop)
|
|
bu3 = Tk.Button(master=fr1, text='Resume', command=self.resume)
|
|
bu4 = Tk.Button(master=fr1, text='1x', command=self.times_one)
|
|
bu5 = Tk.Button(master=fr1, text='5x', command=self.times_five)
|
|
bu6 = Tk.Button(master=fr1, text='10x', command=self.times_ten)
|
|
bu1.pack(side=Tk.RIGHT, padx=5, pady=5)
|
|
bu6.pack(side=Tk.RIGHT, padx=5, pady=5)
|
|
bu5.pack(side=Tk.RIGHT, padx=5, pady=5)
|
|
bu4.pack(side=Tk.RIGHT, padx=5, pady=5)
|
|
bu2.pack(side=Tk.RIGHT, padx=5, pady=5)
|
|
bu3.pack(side=Tk.RIGHT, padx=5, pady=5)
|
|
fr1.pack(side=Tk.BOTTOM)
|
|
|
|
|
|
def animate(self):
|
|
self.w0 += self.advance_count
|
|
# prepare timeline window
|
|
xr, yr = self.tick_window(self.w0, self.wd)
|
|
while self.low_high_crs < self.w0 + self.wd:
|
|
self.mark_low_high(self.low_high_crs)
|
|
self.low_high_crs += 1
|
|
# build polynomial fit
|
|
mms = self.mmh.lohis
|
|
if len(mms) > 1:
|
|
mx = [ num2sod(x) for x in xr ]
|
|
my = yr
|
|
polyval = np.polyfit(mx, my, 10)
|
|
fit = np.polyval(polyval, mx)
|
|
self.fl.set_data(xr, fit)
|
|
# calc diff
|
|
self.dl.set_data(xr, yr - fit)
|
|
highs = self.mmh.highs
|
|
if len(highs) >= 4:
|
|
coefs = np.polyfit([num2sod(x) for n, x, y in highs[-4:]], [y for n, x, y in highs[-4:]], 3)
|
|
self.mh.set_data(xr, [np.polyval(coefs, num2sod(x)) for x in xr])
|
|
lows = self.mmh.lows
|
|
if len(lows) >= 4:
|
|
coefs = np.polyfit([num2sod(x) for n, x, y in lows[-4:]], [y for n, x, y in lows[-4:]], 3)
|
|
self.ml.set_data(xr, [np.polyval(coefs, num2sod(x)) for x in xr])
|
|
# update tick line
|
|
self.tl.set_data(xr, yr)
|
|
# update axis
|
|
self.set_axis(xr, yr)
|
|
self.canvas.draw()
|
|
if self.w0 < len(self.x) - self.wd - 1:
|
|
self.after_id = self.root.after(10, self.animate)
|
|
|
|
def set_axis(self, xr, yr, bias=50):
|
|
if self.ylow is None:
|
|
self.ylow = yr[0] - bias / 2
|
|
self.yhigh = yr[0] + bias / 2
|
|
for y in yr:
|
|
if y < self.ylow:
|
|
self.ylow = y
|
|
self.yhigh = self.ylow + bias
|
|
if y > self.yhigh:
|
|
self.yhigh = y
|
|
self.ylow = self.yhigh - bias
|
|
self.ax1.axis([xr[0], xr[-1], self.ylow, self.yhigh])
|
|
self.ax2.axis([xr[0], xr[-1], -25, +25])
|
|
|
|
def tick_window(self, w0, wd = 1000):
|
|
return (self.x[w0:w0 + wd], self.y[w0:w0 + wd])
|
|
|
|
def mark_low_high(self, n):
|
|
x = self.x
|
|
y = self.y
|
|
rc = self.mmh((n, x[n], y[n]))
|
|
if rc:
|
|
lohi, tick = rc
|
|
nlh, xlh, ylh = tick
|
|
if lohi < 0:
|
|
# low
|
|
self.ax1.annotate('low',
|
|
xy=(x[nlh], y[nlh]),
|
|
xytext=(x[n], y[nlh]),
|
|
arrowprops=dict(facecolor='red',
|
|
frac=0.3,
|
|
shrink=0.1))
|
|
elif lohi > 0:
|
|
# high
|
|
self.ax1.annotate('high',
|
|
xy=(x[nlh], y[nlh]),
|
|
xytext=(x[n], y[nlh]),
|
|
arrowprops=dict(facecolor='green',
|
|
frac=0.3,
|
|
shrink=0.1))
|
|
|
|
def stop(self):
|
|
if self.after_id:
|
|
self.root.after_cancel(self.after_id)
|
|
self.after_id = None
|
|
|
|
def resume(self):
|
|
if self.after_id is None:
|
|
self.after_id = self.root.after(10, self.animate)
|
|
|
|
def times_one(self):
|
|
self.advance_count = 1
|
|
|
|
def times_five(self):
|
|
self.advance_count = 5
|
|
|
|
def times_ten(self):
|
|
self.advance_count = 10
|
|
|
|
def run(self):
|
|
self.root.after(500, self.animate)
|
|
self.root.mainloop()
|
|
self.root.destroy()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
app = Main()
|
|
app.run()
|