Files
py_sandbox/mpl/mpl-embedded.py
Andreas 773d4dfe6c Initial checkin
--HG--
branch : sandbox
2009-06-24 19:11:31 +00:00

331 lines
11 KiB
Python

# Copyright (c) 2008 Andreas Balogh
# See LICENSE for details.
""" animated drawing of ticks
using self.canvas embedded in Tk application
Fibionacci retracements of 61.8, 50.0, 38.2, 23.6 % of min and max
"""
# system imports
import datetime
import os
import re
import logging
import sys
import warnings
import Tkinter as Tk
import numpy as np
import matplotlib
matplotlib.use('TkAgg')
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg
from matplotlib.figure import Figure
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from matplotlib.dates import date2num
# local imports
# constants
# globals
LOG = logging.getLogger()
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s.%(msecs)03i %(levelname).4s %(process)d:%(thread)d %(message)s',
datefmt='%H:%M:%S')
MDF_REO = re.compile("(..):(..):(..)\.*(\d+)*")
def tdl(tick_date):
""" returns a list of tick tuples (cdt, last) for specified day """
fiid = "846900"
year = tick_date.strftime("%Y")
yyyymmdd = tick_date.strftime("%Y%m%d")
filename = "%s.csv" % (fiid)
filepath = os.path.join("d:\\rttrd-prd-var\\consors-mdf\\data", year, yyyymmdd, filename)
x = [ ]
y = [ ]
fh = open(filepath, "r")
try:
prev_last = ""
for line in fh:
flds = line.split(",")
# determine file version
if flds[2] == "LAST":
last = float(flds[3])
vol = float(flds[4])
else:
last = float(flds[4])
vol = 0.0
# skip ticks with same last price
if prev_last == last:
continue
else:
prev_last = last
# parse time
mobj = MDF_REO.match(flds[0])
if mobj is None:
raise ValueError("no match for [%s]" % (flds[0],))
(hh, mm, ss, ms) = mobj.groups()
if ms:
c_time = datetime.time(int(hh), int(mm), int(ss), int(ms) * 1000)
else:
c_time = datetime.time(int(hh), int(mm), int(ss))
cdt = datetime.datetime.combine(tick_date, c_time)
x.append(date2num(cdt))
y.append(last)
finally:
fh.close()
# throw away first line of file (close price from previous day)
del x[0]
del y[0]
return (x, y)
class Mmh:
"""Time series max & min detector."""
def __init__(self, bias):
assert(bias > 0)
self.bias = bias
self.trend = None
self.mm0 = None
self.mms = [ ]
self.mins = [ ]
self.maxs = [ ]
def __call__(self, tick):
"""Add extended tick to the max min parser.
@param tick: The value of the current tick.
@type tick: tuple(cdt, last)
@return: 1. Tick if new max min has been detected,
2. None otherwise.
"""
n, cdt, last = tick
res = None
# automatic initialisation
if self.mm0 is None:
# initalise water mark
self.mm0 = tick
res = self.mm0
self.mins = [(n, cdt, last - 1)]
self.maxs = [(n, cdt, last + 1)]
else:
# initalise trend until price has changed
if self.trend is None or self.trend == 0:
self.trend = cmp(last, self.mm0[2])
# check for max
if self.trend > 0:
if last > self.mm0[2]:
self.mm0 = tick
if last < self.mm0[2] - self.bias:
self.mms.insert(0, self.mm0)
self.maxs.append(self.mm0)
res = self.mm0
# revert trend & water mark
self.mm0 = tick
self.trend = -1
# check for min
if self.trend < 0:
if last < self.mm0[2]:
self.mm0 = tick
if last > self.mm0[2] + self.bias:
self.mms.insert(0, self.mm0)
self.mins.append(self.mm0)
res = self.mm0
# revert trend & water mark
self.mm0 = tick
self.trend = +1
return res
class Main:
def __init__(self):
LOG.debug("Loading ticks...")
self.x, self.y = tdl(datetime.datetime(2009,6,3))
LOG.debug("Ticks loaded.")
self.mmh = Mmh(10)
self.root = Tk.Tk()
self.root.wm_title("Embedding in TK")
fig = plt.figure()
self.ax1 = fig.add_subplot(111) # ticks
# ax2 = fig.add_subplot(312) # gearing
# ax3 = fig.add_subplot(313) # cash
self.ax1.set_ylabel("ticks")
# ax2.set_ylabel("gearing")
# ax3.set_ylabel("cash")
self.w = 1000
self.bias = 10
xr = self.x[0:self.w]
yr = self.y[0:self.w]
fit = np.average(yr)
self.tl, = self.ax1.plot_date(xr, yr, '-')
self.fl, = self.ax1.plot_date(xr, (fit, ) * self.w, 'k--')
self.mh, = self.ax1.plot_date(xr, (yr[0], ) * self.w, 'g:')
self.ml, = self.ax1.plot_date(xr, (yr[0], ) * self.w, 'r:')
major_fmt = mdates.DateFormatter('%H:%M:%S')
self.ax1.xaxis.set_major_formatter(major_fmt)
self.ax1.format_xdata = mdates.DateFormatter('%H:%M:%S')
self.ax1.format_ydata = lambda x: '%1.2f'%x
self.ax1.grid(True)
# rotates and right aligns the x labels, and moves the bottom of the
# axes up to make room for them
fig.autofmt_xdate()
self.ax1.axis([xr[0], xr[-1]+180./86400., min(yr), max(yr)])
self.canvas = FigureCanvasTkAgg(fig, master=self.root)
self.canvas.draw()
self.canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
# toolbar = NavigationToolbar2TkAgg( self.canvas, self.root )
# toolbar.update()
# self.canvas._tkself.canvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
fr1 = Tk.Frame(master = self.root)
bu1 = Tk.Button(master = fr1, text='Quit', command=self.root.quit)
bu2 = Tk.Button(master = fr1, text='Stop', command=self.stop)
bu3 = Tk.Button(master = fr1, text='Resume', command=self.resume)
bu1.pack(side = Tk.RIGHT, padx = 5, pady = 5)
bu2.pack(side = Tk.RIGHT, padx = 5, pady = 5)
bu3.pack(side = Tk.RIGHT, padx = 5, pady = 5)
fr1.pack(side = Tk.BOTTOM)
def animate_start(self):
warnings.simplefilter("default", np.RankWarning)
self.ymin = min(self.y[0:self.w])
self.ymax = max(self.y[0:self.w])
self.low = self.ymin - self.bias
self.high = self.ymax + self.bias
self.trend = 0
self.i = 0
for n in range(0, self.w):
self.mark_low_high(n)
self.root.after(500, self.animate_step)
def animate_step(self):
# prepare timeline window
xr = np.array( self.x[self.i:self.i+self.w] )
yr = np.array( self.y[self.i:self.i+self.w] )
# update line
self.tl.set_xdata(xr)
self.tl.set_ydata(yr)
# determine y axis
if yr[-1] > self.ymax:
self.ymax = yr[-1]
if self.ymax - 50 < min(yr):
self.ymin = self.ymax - 50
if yr[-1] < self.ymin:
self.ymin = yr[-1]
if self.ymin + 50 > max(yr):
self.ymax = self.ymin + 50
# check self.low self.high and annotate
fwd = 2
for n in range(self.i+self.w, self.i+self.w+fwd):
self.mark_low_high(n)
self.i += fwd
# build polynomial fit
mms = self.mmh.mms
if len(mms) > 1:
# mx = [ (x - int(x)) * 86400 for n, x, y in mms[:4] ]
# my = [ y for n, x, y in mms[:4] ]
mx = [ (x - int(x)) * 86400 for x in xr ]
my = yr
xre = [ xr[-1] + x/86400. for x in range(1, 181)]
xr2 = np.append(xr, xre)
# print "mx: ", mx
# print "my: ", my
polyval = np.polyfit(mx, my, 30)
# print "poly1d: ", polyval
intx = np.array(xr, dtype = int)
sodx = xr - intx
sodx *= 86400
s2x = np.append(sodx, range(sodx[-1], sodx[-1]+180))
fit = np.polyval(polyval, s2x)
self.fl.set_xdata(xr2)
self.fl.set_ydata(fit)
maxs = self.mmh.maxs
if len(maxs) > 1:
n, x1, y1 = maxs[-2]
n, x2, y2 = maxs[-1]
x3 = xr[-1]
polyfit = np.polyfit((x1, x2), (y1, y2), 1)
y3 = np.polyval(polyfit, x3)
self.mh.set_data((x1, x2, x3), (y1, y2, y3))
mins = self.mmh.mins
if len(mins) > 1:
n, x1, y1 = mins[-2]
n, x2, y2 = mins[-1]
x3 = xr[-1]
polyfit = np.polyfit((x1, x2), (y1, y2), 1)
y3 = np.polyval(polyfit, x3)
self.ml.set_data((x1, x2, x3), (y1, y2, y3))
# draw
self.ax1.axis([xr[0], xr[-1]+180./86400., self.ymin, self.ymax])
self.canvas.draw()
if self.i < len(self.x)-self.w-1:
self.after_id = self.root.after(10, self.animate_step)
def build_fit(self):
pass
def mark_low_high(self, n):
x = self.x
y = self.y
rc = self.mmh((n, x[n], y[n]))
if rc:
nlh, xlh, ylh = rc
if self.mmh.trend > 0:
# low
self.ax1.annotate('low',
xy = (x[nlh], y[nlh]),
xytext = (x[n], y[nlh]),
arrowprops = dict(facecolor = 'red',
shrink = 0.05))
# an.set_annotation_clip(True)
elif self.mmh.trend < 0:
# high
self.ax1.annotate('high',
xy = (x[nlh], y[nlh]),
xytext = (x[n], y[nlh]),
arrowprops = dict(facecolor = 'green',
shrink = 0.05))
# an.set_annotation_clip(True)
def stop(self):
if self.after_id:
self.root.after_cancel(self.after_id)
self.after_id = None
def resume(self):
if self.after_id is None:
self.after_id = self.root.after(10, self.animate_step)
def run(self):
self.root.after(500, self.animate_start)
self.root.mainloop()
self.root.destroy()
if __name__ == "__main__":
app = Main()
app.run()