331 lines
11 KiB
Python
331 lines
11 KiB
Python
# Copyright (c) 2008 Andreas Balogh
|
|
# See LICENSE for details.
|
|
|
|
""" animated drawing of ticks
|
|
|
|
using self.canvas embedded in Tk application
|
|
|
|
Fibionacci retracements of 61.8, 50.0, 38.2, 23.6 % of min and max
|
|
"""
|
|
|
|
# system imports
|
|
|
|
import datetime
|
|
import os
|
|
import re
|
|
import logging
|
|
import sys
|
|
import warnings
|
|
|
|
import Tkinter as Tk
|
|
import numpy as np
|
|
|
|
import matplotlib
|
|
matplotlib.use('TkAgg')
|
|
|
|
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg
|
|
from matplotlib.figure import Figure
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.dates as mdates
|
|
from matplotlib.dates import date2num
|
|
|
|
# local imports
|
|
|
|
# constants
|
|
|
|
# globals
|
|
|
|
LOG = logging.getLogger()
|
|
|
|
logging.basicConfig(level=logging.DEBUG,
|
|
format='%(asctime)s.%(msecs)03i %(levelname).4s %(process)d:%(thread)d %(message)s',
|
|
datefmt='%H:%M:%S')
|
|
|
|
MDF_REO = re.compile("(..):(..):(..)\.*(\d+)*")
|
|
|
|
def tdl(tick_date):
|
|
""" returns a list of tick tuples (cdt, last) for specified day """
|
|
fiid = "846900"
|
|
year = tick_date.strftime("%Y")
|
|
yyyymmdd = tick_date.strftime("%Y%m%d")
|
|
filename = "%s.csv" % (fiid)
|
|
filepath = os.path.join("d:\\rttrd-prd-var\\consors-mdf\\data", year, yyyymmdd, filename)
|
|
x = [ ]
|
|
y = [ ]
|
|
fh = open(filepath, "r")
|
|
try:
|
|
prev_last = ""
|
|
for line in fh:
|
|
flds = line.split(",")
|
|
# determine file version
|
|
if flds[2] == "LAST":
|
|
last = float(flds[3])
|
|
vol = float(flds[4])
|
|
else:
|
|
last = float(flds[4])
|
|
vol = 0.0
|
|
# skip ticks with same last price
|
|
if prev_last == last:
|
|
continue
|
|
else:
|
|
prev_last = last
|
|
# parse time
|
|
mobj = MDF_REO.match(flds[0])
|
|
if mobj is None:
|
|
raise ValueError("no match for [%s]" % (flds[0],))
|
|
(hh, mm, ss, ms) = mobj.groups()
|
|
if ms:
|
|
c_time = datetime.time(int(hh), int(mm), int(ss), int(ms) * 1000)
|
|
else:
|
|
c_time = datetime.time(int(hh), int(mm), int(ss))
|
|
cdt = datetime.datetime.combine(tick_date, c_time)
|
|
x.append(date2num(cdt))
|
|
y.append(last)
|
|
finally:
|
|
fh.close()
|
|
# throw away first line of file (close price from previous day)
|
|
del x[0]
|
|
del y[0]
|
|
return (x, y)
|
|
|
|
|
|
class Mmh:
|
|
"""Time series max & min detector."""
|
|
def __init__(self, bias):
|
|
assert(bias > 0)
|
|
self.bias = bias
|
|
self.trend = None
|
|
self.mm0 = None
|
|
self.mms = [ ]
|
|
self.mins = [ ]
|
|
self.maxs = [ ]
|
|
|
|
def __call__(self, tick):
|
|
"""Add extended tick to the max min parser.
|
|
|
|
@param tick: The value of the current tick.
|
|
@type tick: tuple(cdt, last)
|
|
|
|
@return: 1. Tick if new max min has been detected,
|
|
2. None otherwise.
|
|
"""
|
|
n, cdt, last = tick
|
|
res = None
|
|
# automatic initialisation
|
|
if self.mm0 is None:
|
|
# initalise water mark
|
|
self.mm0 = tick
|
|
res = self.mm0
|
|
self.mins = [(n, cdt, last - 1)]
|
|
self.maxs = [(n, cdt, last + 1)]
|
|
else:
|
|
# initalise trend until price has changed
|
|
if self.trend is None or self.trend == 0:
|
|
self.trend = cmp(last, self.mm0[2])
|
|
# check for max
|
|
if self.trend > 0:
|
|
if last > self.mm0[2]:
|
|
self.mm0 = tick
|
|
if last < self.mm0[2] - self.bias:
|
|
self.mms.insert(0, self.mm0)
|
|
self.maxs.append(self.mm0)
|
|
res = self.mm0
|
|
# revert trend & water mark
|
|
self.mm0 = tick
|
|
self.trend = -1
|
|
# check for min
|
|
if self.trend < 0:
|
|
if last < self.mm0[2]:
|
|
self.mm0 = tick
|
|
if last > self.mm0[2] + self.bias:
|
|
self.mms.insert(0, self.mm0)
|
|
self.mins.append(self.mm0)
|
|
res = self.mm0
|
|
# revert trend & water mark
|
|
self.mm0 = tick
|
|
self.trend = +1
|
|
return res
|
|
|
|
|
|
class Main:
|
|
def __init__(self):
|
|
LOG.debug("Loading ticks...")
|
|
self.x, self.y = tdl(datetime.datetime(2009,6,3))
|
|
LOG.debug("Ticks loaded.")
|
|
self.mmh = Mmh(10)
|
|
|
|
self.root = Tk.Tk()
|
|
self.root.wm_title("Embedding in TK")
|
|
|
|
fig = plt.figure()
|
|
self.ax1 = fig.add_subplot(111) # ticks
|
|
# ax2 = fig.add_subplot(312) # gearing
|
|
# ax3 = fig.add_subplot(313) # cash
|
|
|
|
self.ax1.set_ylabel("ticks")
|
|
# ax2.set_ylabel("gearing")
|
|
# ax3.set_ylabel("cash")
|
|
|
|
self.w = 1000
|
|
self.bias = 10
|
|
|
|
xr = self.x[0:self.w]
|
|
yr = self.y[0:self.w]
|
|
|
|
fit = np.average(yr)
|
|
|
|
self.tl, = self.ax1.plot_date(xr, yr, '-')
|
|
self.fl, = self.ax1.plot_date(xr, (fit, ) * self.w, 'k--')
|
|
self.mh, = self.ax1.plot_date(xr, (yr[0], ) * self.w, 'g:')
|
|
self.ml, = self.ax1.plot_date(xr, (yr[0], ) * self.w, 'r:')
|
|
major_fmt = mdates.DateFormatter('%H:%M:%S')
|
|
self.ax1.xaxis.set_major_formatter(major_fmt)
|
|
|
|
self.ax1.format_xdata = mdates.DateFormatter('%H:%M:%S')
|
|
self.ax1.format_ydata = lambda x: '%1.2f'%x
|
|
self.ax1.grid(True)
|
|
|
|
# rotates and right aligns the x labels, and moves the bottom of the
|
|
# axes up to make room for them
|
|
fig.autofmt_xdate()
|
|
self.ax1.axis([xr[0], xr[-1]+180./86400., min(yr), max(yr)])
|
|
|
|
self.canvas = FigureCanvasTkAgg(fig, master=self.root)
|
|
self.canvas.draw()
|
|
self.canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
|
|
|
|
# toolbar = NavigationToolbar2TkAgg( self.canvas, self.root )
|
|
# toolbar.update()
|
|
# self.canvas._tkself.canvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
|
|
|
|
fr1 = Tk.Frame(master = self.root)
|
|
bu1 = Tk.Button(master = fr1, text='Quit', command=self.root.quit)
|
|
bu2 = Tk.Button(master = fr1, text='Stop', command=self.stop)
|
|
bu3 = Tk.Button(master = fr1, text='Resume', command=self.resume)
|
|
bu1.pack(side = Tk.RIGHT, padx = 5, pady = 5)
|
|
bu2.pack(side = Tk.RIGHT, padx = 5, pady = 5)
|
|
bu3.pack(side = Tk.RIGHT, padx = 5, pady = 5)
|
|
fr1.pack(side = Tk.BOTTOM)
|
|
|
|
def animate_start(self):
|
|
warnings.simplefilter("default", np.RankWarning)
|
|
|
|
self.ymin = min(self.y[0:self.w])
|
|
self.ymax = max(self.y[0:self.w])
|
|
|
|
self.low = self.ymin - self.bias
|
|
self.high = self.ymax + self.bias
|
|
self.trend = 0
|
|
self.i = 0
|
|
for n in range(0, self.w):
|
|
self.mark_low_high(n)
|
|
self.root.after(500, self.animate_step)
|
|
|
|
def animate_step(self):
|
|
# prepare timeline window
|
|
xr = np.array( self.x[self.i:self.i+self.w] )
|
|
yr = np.array( self.y[self.i:self.i+self.w] )
|
|
# update line
|
|
self.tl.set_xdata(xr)
|
|
self.tl.set_ydata(yr)
|
|
# determine y axis
|
|
if yr[-1] > self.ymax:
|
|
self.ymax = yr[-1]
|
|
if self.ymax - 50 < min(yr):
|
|
self.ymin = self.ymax - 50
|
|
if yr[-1] < self.ymin:
|
|
self.ymin = yr[-1]
|
|
if self.ymin + 50 > max(yr):
|
|
self.ymax = self.ymin + 50
|
|
# check self.low self.high and annotate
|
|
fwd = 2
|
|
for n in range(self.i+self.w, self.i+self.w+fwd):
|
|
self.mark_low_high(n)
|
|
self.i += fwd
|
|
# build polynomial fit
|
|
mms = self.mmh.mms
|
|
if len(mms) > 1:
|
|
# mx = [ (x - int(x)) * 86400 for n, x, y in mms[:4] ]
|
|
# my = [ y for n, x, y in mms[:4] ]
|
|
mx = [ (x - int(x)) * 86400 for x in xr ]
|
|
my = yr
|
|
xre = [ xr[-1] + x/86400. for x in range(1, 181)]
|
|
xr2 = np.append(xr, xre)
|
|
# print "mx: ", mx
|
|
# print "my: ", my
|
|
polyval = np.polyfit(mx, my, 30)
|
|
# print "poly1d: ", polyval
|
|
intx = np.array(xr, dtype = int)
|
|
sodx = xr - intx
|
|
sodx *= 86400
|
|
s2x = np.append(sodx, range(sodx[-1], sodx[-1]+180))
|
|
fit = np.polyval(polyval, s2x)
|
|
self.fl.set_xdata(xr2)
|
|
self.fl.set_ydata(fit)
|
|
maxs = self.mmh.maxs
|
|
if len(maxs) > 1:
|
|
n, x1, y1 = maxs[-2]
|
|
n, x2, y2 = maxs[-1]
|
|
x3 = xr[-1]
|
|
polyfit = np.polyfit((x1, x2), (y1, y2), 1)
|
|
y3 = np.polyval(polyfit, x3)
|
|
self.mh.set_data((x1, x2, x3), (y1, y2, y3))
|
|
mins = self.mmh.mins
|
|
if len(mins) > 1:
|
|
n, x1, y1 = mins[-2]
|
|
n, x2, y2 = mins[-1]
|
|
x3 = xr[-1]
|
|
polyfit = np.polyfit((x1, x2), (y1, y2), 1)
|
|
y3 = np.polyval(polyfit, x3)
|
|
self.ml.set_data((x1, x2, x3), (y1, y2, y3))
|
|
# draw
|
|
self.ax1.axis([xr[0], xr[-1]+180./86400., self.ymin, self.ymax])
|
|
self.canvas.draw()
|
|
if self.i < len(self.x)-self.w-1:
|
|
self.after_id = self.root.after(10, self.animate_step)
|
|
|
|
def build_fit(self):
|
|
pass
|
|
|
|
def mark_low_high(self, n):
|
|
x = self.x
|
|
y = self.y
|
|
rc = self.mmh((n, x[n], y[n]))
|
|
if rc:
|
|
nlh, xlh, ylh = rc
|
|
if self.mmh.trend > 0:
|
|
# low
|
|
self.ax1.annotate('low',
|
|
xy = (x[nlh], y[nlh]),
|
|
xytext = (x[n], y[nlh]),
|
|
arrowprops = dict(facecolor = 'red',
|
|
shrink = 0.05))
|
|
# an.set_annotation_clip(True)
|
|
elif self.mmh.trend < 0:
|
|
# high
|
|
self.ax1.annotate('high',
|
|
xy = (x[nlh], y[nlh]),
|
|
xytext = (x[n], y[nlh]),
|
|
arrowprops = dict(facecolor = 'green',
|
|
shrink = 0.05))
|
|
# an.set_annotation_clip(True)
|
|
|
|
def stop(self):
|
|
if self.after_id:
|
|
self.root.after_cancel(self.after_id)
|
|
self.after_id = None
|
|
|
|
def resume(self):
|
|
if self.after_id is None:
|
|
self.after_id = self.root.after(10, self.animate_step)
|
|
|
|
def run(self):
|
|
self.root.after(500, self.animate_start)
|
|
self.root.mainloop()
|
|
self.root.destroy()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
app = Main()
|
|
app.run()
|