working with online segmentation algos
--HG-- branch : sandbox
This commit is contained in:
556
mpl/bup1.py
Normal file
556
mpl/bup1.py
Normal file
@@ -0,0 +1,556 @@
|
||||
# Copyright (c) 2008 Andreas Balogh
|
||||
# See LICENSE for details.
|
||||
|
||||
'''
|
||||
online bottom up
|
||||
'''
|
||||
|
||||
# system imports
|
||||
|
||||
import datetime
|
||||
import os
|
||||
import re
|
||||
import logging
|
||||
import warnings
|
||||
import math
|
||||
|
||||
import Tkinter as Tk
|
||||
import numpy as np
|
||||
|
||||
import matplotlib as mpl
|
||||
mpl.use('TkAgg')
|
||||
|
||||
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.dates as mdates
|
||||
from matplotlib.dates import date2num
|
||||
|
||||
# local imports
|
||||
|
||||
from globals import *
|
||||
|
||||
# constants
|
||||
|
||||
ONE_MINUTE = 60. / 86400.
|
||||
LOW, NONE, HIGH = range(-1, 2)
|
||||
|
||||
# globals
|
||||
|
||||
LOG = logging.getLogger()
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG,
|
||||
format='%(asctime)s.%(msecs)03i %(levelname).4s %(process)d:%(thread)d %(message)s',
|
||||
datefmt='%H:%M:%S')
|
||||
|
||||
MDF_REO = re.compile("(..):(..):(..)\.*(\d+)*")
|
||||
|
||||
|
||||
def tdl(tick_date):
|
||||
''' returns a list of tick tuples (cdt, last) for specified day '''
|
||||
fiid = "846900"
|
||||
year = tick_date.strftime("%Y")
|
||||
yyyymmdd = tick_date.strftime("%Y%m%d")
|
||||
filename = "%s.csv" % (fiid)
|
||||
filepath = os.path.join(RTTRD_VAR, "consors-mdf\\data", year, yyyymmdd, filename)
|
||||
x = [ ]
|
||||
y = [ ]
|
||||
v = [ ]
|
||||
fh = open(filepath, "r")
|
||||
try:
|
||||
prev_last = ""
|
||||
for line in fh:
|
||||
flds = line.split(",")
|
||||
# determine file version
|
||||
if flds[2] == "LAST":
|
||||
last = float(flds[3])
|
||||
vol = float(flds[4])
|
||||
else:
|
||||
last = float(flds[4])
|
||||
vol = 0.0
|
||||
# skip ticks with same last price
|
||||
if prev_last == last:
|
||||
continue
|
||||
else:
|
||||
prev_last = last
|
||||
# parse time
|
||||
mobj = MDF_REO.match(flds[0])
|
||||
if mobj is None:
|
||||
raise ValueError("no match for [%s]" % (flds[0],))
|
||||
(hh, mm, ss, ms) = mobj.groups()
|
||||
if ms:
|
||||
c_time = datetime.time(int(hh), int(mm), int(ss), int(ms) * 1000)
|
||||
else:
|
||||
c_time = datetime.time(int(hh), int(mm), int(ss))
|
||||
cdt = datetime.datetime.combine(tick_date, c_time)
|
||||
x.append(date2num(cdt))
|
||||
y.append(last)
|
||||
v.append(vol)
|
||||
finally:
|
||||
fh.close()
|
||||
# throw away first line of file (close price from previous day)
|
||||
del x[0]
|
||||
del y[0]
|
||||
del v[0]
|
||||
return (x, y, v)
|
||||
|
||||
def interpolate_line(xs, ys):
|
||||
'''Fit a straight line y = bx + a to a set of points (x, y) '''
|
||||
# from two data points only!
|
||||
x1, x2 = xs
|
||||
y1, y2 = ys
|
||||
try:
|
||||
b = ( y2 - y1 ) / ( x2 - x1 )
|
||||
except ZeroDivisionError:
|
||||
print "interpolate_line: division by zero, ", x1, x2, y1, y2
|
||||
b = 0.0
|
||||
a = y1 - b * x1
|
||||
return (b, a)
|
||||
|
||||
def num2sod(x):
|
||||
frac, integ = math.modf(x)
|
||||
return frac * 86400
|
||||
|
||||
class Lohi:
|
||||
'''Time series online low and high detector.'''
|
||||
def __init__(self, bias):
|
||||
assert(bias > 0)
|
||||
self.bias = bias
|
||||
self.low0 = None
|
||||
self.high0 = None
|
||||
self.prev_lohi = NONE
|
||||
self.lohis = [ ]
|
||||
self.lows = [ ]
|
||||
self.highs = [ ]
|
||||
|
||||
def __call__(self, tick):
|
||||
'''Add extended tick to the max min parser.
|
||||
|
||||
@param tick: The value of the current tick.
|
||||
@type tick: tuple(cdt, last)
|
||||
|
||||
@return: 1. Tick if new max min has been detected,
|
||||
2. None otherwise.
|
||||
'''
|
||||
n, cdt, last = tick
|
||||
res = None
|
||||
# automatic initialisation
|
||||
if self.low0 is None:
|
||||
self.low0 = tick
|
||||
self.lows.append((n, cdt, last - 1))
|
||||
if self.high0 is None:
|
||||
self.high0 = tick
|
||||
self.highs.append((n, cdt, last + 1))
|
||||
if last > self.high0[2]:
|
||||
self.high0 = tick
|
||||
if self.prev_lohi == NONE:
|
||||
if self.high0[2] > self.low0[2] + self.bias:
|
||||
res = self.high0
|
||||
self.low0 = self.high0
|
||||
self.lows.append(self.high0)
|
||||
self.lohis.append(self.high0)
|
||||
self.prev_lohi = HIGH
|
||||
if last < self.low0[2]:
|
||||
self.low0 = tick
|
||||
if self.prev_lohi == NONE:
|
||||
if self.low0[2] < self.high0[2] - self.bias:
|
||||
res = self.low0
|
||||
self.high0 = self.low0
|
||||
self.lows.append(self.low0)
|
||||
self.lohis.append(self.low0)
|
||||
self.prev_lohi = LOW
|
||||
if self.high0[1] < cdt - ONE_MINUTE and \
|
||||
((self.prev_lohi == LOW and \
|
||||
self.high0[2] > self.lows[-1][2] + self.bias) or
|
||||
(self.prev_lohi == HIGH and \
|
||||
self.high0[2] > self.highs[-1][2])):
|
||||
res = self.high0
|
||||
self.low0 = self.high0
|
||||
self.highs.append(self.high0)
|
||||
self.lohis.append(self.high0)
|
||||
self.prev_lohi = HIGH
|
||||
if self.low0[1] < cdt - ONE_MINUTE and \
|
||||
((self.prev_lohi == LOW and \
|
||||
self.low0[2] < self.lows[-1][2]) or
|
||||
(self.prev_lohi == HIGH and \
|
||||
self.low0[2] < self.highs[-1][2] - self.bias)):
|
||||
res = self.low0
|
||||
self.high0 = self.low0
|
||||
self.lows.append(self.low0)
|
||||
self.lohis.append(self.low0)
|
||||
self.prev_lohi = LOW
|
||||
if res:
|
||||
return (self.prev_lohi, res)
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def find_lows_highs(xs, ys):
|
||||
dacp = DelayedAcp(10)
|
||||
for tick in zip(range(len(xs)), xs, ys):
|
||||
dacp(tick)
|
||||
return dacp.lows, dacp.highs
|
||||
|
||||
|
||||
class DelayedAcp:
|
||||
'''Time series max & min detector.'''
|
||||
def __init__(self, bias):
|
||||
assert(bias > 0)
|
||||
self.bias = bias
|
||||
self.trend = None
|
||||
self.mm0 = None
|
||||
self.lohis = [ ]
|
||||
self.lows = [ ]
|
||||
self.highs = [ ]
|
||||
|
||||
def __call__(self, tick):
|
||||
'''Add extended tick to the max min parser.
|
||||
|
||||
@param tick: The value of the current tick.
|
||||
@type tick: tuple(n, cdt, last)
|
||||
|
||||
@return: 1. Tick if new max min has been detected,
|
||||
2. None otherwise.
|
||||
'''
|
||||
n, cdt, last = tick
|
||||
res = None
|
||||
# automatic initialisation
|
||||
if self.mm0 is None:
|
||||
# initialise water mark
|
||||
self.mm0 = tick
|
||||
res = self.mm0
|
||||
self.lows = [(n, cdt, last - 1)]
|
||||
self.highs = [(n, cdt, last + 1)]
|
||||
else:
|
||||
# initialise trend until price has changed
|
||||
if self.trend is None or self.trend == 0:
|
||||
self.trend = cmp(last, self.mm0[2])
|
||||
# check for max
|
||||
if self.trend > 0:
|
||||
if last > self.mm0[2]:
|
||||
self.mm0 = tick
|
||||
if last < self.mm0[2] - self.bias:
|
||||
self.lohis.append(self.mm0)
|
||||
self.highs.append(self.mm0)
|
||||
res = self.mm0
|
||||
# revert trend & water mark
|
||||
self.mm0 = tick
|
||||
self.trend = -1
|
||||
# check for min
|
||||
if self.trend < 0:
|
||||
if last < self.mm0[2]:
|
||||
self.mm0 = tick
|
||||
if last > self.mm0[2] + self.bias:
|
||||
self.lohis.append(self.mm0)
|
||||
self.lows.append(self.mm0)
|
||||
res = self.mm0
|
||||
# revert trend & water mark
|
||||
self.mm0 = tick
|
||||
self.trend = +1
|
||||
return (cmp(self.trend, 0), res)
|
||||
|
||||
|
||||
class TopDownLoHi:
|
||||
'''Time series high & low detector.'''
|
||||
def __init__(self, bias):
|
||||
assert(bias > 0)
|
||||
self.bias = bias
|
||||
self.xs = [ ]
|
||||
self.ys = [ ]
|
||||
self.seg0 = 0
|
||||
self.lohis = [ ]
|
||||
self.lows = [ ]
|
||||
self.highs = [ ]
|
||||
|
||||
def __call__(self, tick):
|
||||
'''Add extended tick to the max min parser.
|
||||
|
||||
@param tick: The value of the current tick.
|
||||
@type tick: tuple(n, cdt, last)
|
||||
|
||||
@return: 1. Tick if new max min has been detected,
|
||||
2. None otherwise.
|
||||
'''
|
||||
n, cdt, last = tick
|
||||
self.xs.append(cdt)
|
||||
self.ys.append(last)
|
||||
if len(self.xs) < 2:
|
||||
return None
|
||||
n0 = self.seg0
|
||||
n1 = len(self.xs)-1
|
||||
max_distance = self.bias
|
||||
x0, y0 = (self.xs[n0], self.ys[n0])
|
||||
x1, y1 = (self.xs[n1], self.ys[n1])
|
||||
if n1 > n0:
|
||||
# check distance
|
||||
coefs = interpolate_line((x0, x1), (y0, y1))
|
||||
ly2s = np.polyval(coefs, self.xs[n0:n1])
|
||||
lys = self.ys[n0:n1]
|
||||
ldiffs = np.absolute(lys - ly2s)
|
||||
if np.amax(ldiffs) > max_distance:
|
||||
for n, d in enumerate(ldiffs):
|
||||
if d > max_distance:
|
||||
n2 = n0 + n
|
||||
x2, y2 = (self.xs[n2], self.ys[n2])
|
||||
self.seg.set_data((x0, x2), (y0, y2))
|
||||
self.segs.append(self.seg)
|
||||
# start a new line segment
|
||||
self.n0 = n2
|
||||
x0, y0 = (self.xs[n0], self.ys[n0])
|
||||
coefs = interpolate_line((x0, x1), (y0, y1))
|
||||
self.seg, = self.ax1.plot_date((x0, x1), (y0, y1), 'k-')
|
||||
break
|
||||
|
||||
|
||||
|
||||
def on_segment(self):
|
||||
''' calculate gearing
|
||||
y: previous slope, x: current slope
|
||||
<0 ~0 >0
|
||||
<0 L L L
|
||||
~0 H 0 L
|
||||
>0 H H H
|
||||
'''
|
||||
pass
|
||||
|
||||
|
||||
class Main:
|
||||
def __init__(self):
|
||||
warnings.simplefilter("default", np.RankWarning)
|
||||
self.advance_count = 10
|
||||
self.ylow = None
|
||||
self.yhigh = None
|
||||
self.segs = [ ]
|
||||
|
||||
self.root = Tk.Tk()
|
||||
self.root.wm_title("Embedding in TK")
|
||||
|
||||
# create plot
|
||||
fig = plt.figure()
|
||||
self.ax1 = fig.add_subplot(311) # ticks
|
||||
self.ax2 = fig.add_subplot(312) # slope of line segement
|
||||
self.ax3 = fig.add_subplot(313) # moving average (10min)
|
||||
|
||||
self.ax1.set_ylabel("ticks")
|
||||
self.ax2.set_ylabel("slope")
|
||||
self.ax3.set_ylabel("gearing")
|
||||
|
||||
major_fmt = mdates.DateFormatter('%H:%M:%S')
|
||||
self.ax1.xaxis.set_major_formatter(major_fmt)
|
||||
self.ax1.xaxis.set_major_locator(mdates.MinuteLocator(byminute = range(0, 60, 10)))
|
||||
self.ax1.xaxis.set_minor_locator(mdates.MinuteLocator())
|
||||
self.ax1.format_xdata = major_fmt
|
||||
self.ax1.format_ydata = lambda x: '%1.2f' % x
|
||||
self.ax1.grid(True)
|
||||
|
||||
self.ax2.xaxis.set_major_formatter(major_fmt)
|
||||
self.ax2.xaxis.set_major_locator(mdates.MinuteLocator(byminute = range(0, 60, 10)))
|
||||
self.ax2.xaxis.set_minor_locator(mdates.MinuteLocator())
|
||||
self.ax2.format_xdata = major_fmt
|
||||
self.ax2.format_ydata = lambda x: '%1.2f' % x
|
||||
self.ax2.grid(True)
|
||||
|
||||
self.ax3.xaxis.set_major_formatter(major_fmt)
|
||||
self.ax3.xaxis.set_major_locator(mdates.MinuteLocator(byminute = range(0, 60, 10)))
|
||||
self.ax3.xaxis.set_minor_locator(mdates.MinuteLocator())
|
||||
self.ax3.format_xdata = major_fmt
|
||||
self.ax3.format_ydata = lambda x: '%1.2f' % x
|
||||
self.ax3.grid(True)
|
||||
|
||||
# rotates and right aligns the x labels, and moves the bottom of the
|
||||
# axes up to make room for them
|
||||
fig.autofmt_xdate()
|
||||
|
||||
# create artists
|
||||
LOG.debug("Loading ticks...")
|
||||
self.xs, self.ys, self.vs = tdl(datetime.datetime(2009, 7, 3))
|
||||
LOG.debug("Ticks loaded.")
|
||||
lows, highs = find_lows_highs(self.xs, self.ys)
|
||||
self.mas = self.ys[:]
|
||||
self.ss = [ 0 ] * len(self.xs)
|
||||
self.gs = [ 0 ] * len(self.xs)
|
||||
|
||||
self.mmh = Lohi(5)
|
||||
|
||||
self.w0 = 0
|
||||
self.wd = 2000
|
||||
self.low_high_crs = 0
|
||||
xr, yr, vr, sr, gr = self.tick_window(self.w0, self.wd)
|
||||
self.n0 = 0
|
||||
|
||||
# top subplot
|
||||
self.tl, = self.ax1.plot_date(xr, yr, '-')
|
||||
self.seg, = self.ax1.plot_date((xr[0], xr[1]), (yr[0], yr[1]), 'k-')
|
||||
# Acp markers
|
||||
self.him, = self.ax1.plot_date([x for n, x, y in lows], [y for n, x, y in lows], 'go')
|
||||
self.lom, = self.ax1.plot_date([x for n, x, y in highs], [y for n, x, y in highs], 'ro')
|
||||
|
||||
# volume subplot
|
||||
# self.dl, = self.ax2.plot_date(xr, vr, '-')
|
||||
self.dl, = self.ax1.plot_date(xr, vr, 'g-')
|
||||
|
||||
# slope subplot
|
||||
self.sl, = self.ax2.plot_date(xr, sr, '-')
|
||||
|
||||
# gearing subplot
|
||||
self.gl, = self.ax3.plot_date(xr, gr, '-')
|
||||
|
||||
self.set_axis(xr, yr)
|
||||
|
||||
# embed canvas in Tk
|
||||
self.canvas = FigureCanvasTkAgg(fig, master=self.root)
|
||||
self.canvas.draw()
|
||||
self.canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=Tk.TRUE)
|
||||
|
||||
# toolbar = NavigationToolbar2TkAgg( self.canvas, self.root )
|
||||
# toolbar.update()
|
||||
# self.canvas._tkself.canvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
|
||||
|
||||
fr1 = Tk.Frame(master=self.root)
|
||||
bu1 = Tk.Button(master=fr1, text='Quit', command=self.root.quit)
|
||||
bu2 = Tk.Button(master=fr1, text='Stop', command=self.stop)
|
||||
bu4 = Tk.Button(master=fr1, text='1x', command=self.times_one)
|
||||
bu5 = Tk.Button(master=fr1, text='5x', command=self.times_five)
|
||||
bu6 = Tk.Button(master=fr1, text='10x', command=self.times_ten)
|
||||
bu1.pack(side=Tk.RIGHT, padx=5, pady=5)
|
||||
bu6.pack(side=Tk.RIGHT, padx=5, pady=5)
|
||||
bu5.pack(side=Tk.RIGHT, padx=5, pady=5)
|
||||
bu4.pack(side=Tk.RIGHT, padx=5, pady=5)
|
||||
bu2.pack(side=Tk.RIGHT, padx=5, pady=5)
|
||||
fr1.pack(side=Tk.BOTTOM)
|
||||
|
||||
|
||||
def animate(self):
|
||||
self.w0 += self.advance_count
|
||||
# prepare timeline window
|
||||
xr, yr, vr, sr, gr = self.tick_window(self.w0, self.wd)
|
||||
while self.low_high_crs < self.w0 + self.wd:
|
||||
self.mark_low_high(self.low_high_crs)
|
||||
self.lin_seg(self.low_high_crs)
|
||||
self.ma(self.low_high_crs, 10)
|
||||
self.low_high_crs += 1
|
||||
# update tick line
|
||||
self.tl.set_data(xr, yr)
|
||||
# upadte linear segment
|
||||
n0, n1 = (self.n0, self.low_high_crs)
|
||||
x0, y0 = (self.xs[n0], self.ys[n0])
|
||||
x1, y1 = (self.xs[n1], self.ys[n1])
|
||||
self.seg.set_data((x0, x1), (y0, y1))
|
||||
# update segment slope
|
||||
self.sl.set_data(xr, sr)
|
||||
# update volume line
|
||||
self.dl.set_data(xr, vr)
|
||||
# gearing line
|
||||
self.gl.set_data(xr, gr)
|
||||
# update axis
|
||||
self.set_axis(xr, yr)
|
||||
self.canvas.draw()
|
||||
if self.w0 < len(self.xs) - self.wd - 1:
|
||||
self.after_id = self.root.after(10, self.animate)
|
||||
|
||||
def set_axis(self, xr, yr, bias=50):
|
||||
if self.ylow is None:
|
||||
self.ylow = yr[0] - bias / 2
|
||||
self.yhigh = yr[0] + bias / 2
|
||||
for y in yr:
|
||||
if y < self.ylow:
|
||||
self.ylow = y
|
||||
self.yhigh = self.ylow + bias
|
||||
if y > self.yhigh:
|
||||
self.yhigh = y
|
||||
self.ylow = self.yhigh - bias
|
||||
self.ax1.axis([xr[0], xr[-1], self.ylow, self.yhigh])
|
||||
self.ax2.axis([xr[0], xr[-1], -5, +5])
|
||||
self.ax3.axis([xr[0], xr[-1], -50, +50])
|
||||
|
||||
def tick_window(self, w0, wd = 1000):
|
||||
return (self.xs[w0:w0 + wd],
|
||||
self.ys[w0:w0 + wd],
|
||||
self.mas[w0:w0 + wd],
|
||||
self.ss[w0:w0 + wd],
|
||||
self.gs[w0:w0+wd])
|
||||
|
||||
def ma(self, n0, min):
|
||||
self.mas[n0] = np.average(self.ys[n0-min*60:n0])
|
||||
self.gs[n0] = self.ys[n0] - self.mas[n0] + self.ss[n0]
|
||||
|
||||
def lin_seg(self, n1):
|
||||
max_distance = 5
|
||||
n0 = self.n0
|
||||
x0, y0 = (self.xs[n0], self.ys[n0])
|
||||
x1, y1 = (self.xs[n1], self.ys[n1])
|
||||
self.seg.set_data((x0, x1), (y0, y1))
|
||||
if n1 > n0:
|
||||
# check distance
|
||||
coefs = interpolate_line((x0, x1), (y0, y1))
|
||||
ly2s = np.polyval(coefs, self.xs[n0:n1])
|
||||
self.ss[n1] = coefs[0] * ONE_MINUTE
|
||||
lys = self.ys[n0:n1]
|
||||
ldiffs = np.absolute(lys - ly2s)
|
||||
if np.amax(ldiffs) > max_distance:
|
||||
for n, d in enumerate(ldiffs):
|
||||
if d > max_distance:
|
||||
n2 = n0 + n
|
||||
x2, y2 = (self.xs[n2], self.ys[n2])
|
||||
self.seg.set_data((x0, x2), (y0, y2))
|
||||
self.segs.append(self.seg)
|
||||
# start a new line segment
|
||||
self.n0 = n2
|
||||
x0, y0 = (self.xs[n0], self.ys[n0])
|
||||
coefs = interpolate_line((x0, x1), (y0, y1))
|
||||
self.seg, = self.ax1.plot_date((x0, x1), (y0, y1), 'k-')
|
||||
break
|
||||
|
||||
def mark_low_high(self, n):
|
||||
x = self.xs
|
||||
y = self.ys
|
||||
rc = self.mmh((n, x[n], y[n]))
|
||||
if rc:
|
||||
lohi, tick = rc
|
||||
nlh, xlh, ylh = tick
|
||||
if lohi < 0:
|
||||
# low
|
||||
self.ax1.annotate('low',
|
||||
xy=(x[nlh], y[nlh]),
|
||||
xytext=(x[n], y[nlh]),
|
||||
arrowprops=dict(facecolor='red',
|
||||
frac=0.3,
|
||||
shrink=0.1))
|
||||
elif lohi > 0:
|
||||
# high
|
||||
self.ax1.annotate('high',
|
||||
xy=(x[nlh], y[nlh]),
|
||||
xytext=(x[n], y[nlh]),
|
||||
arrowprops=dict(facecolor='green',
|
||||
frac=0.3,
|
||||
shrink=0.1))
|
||||
|
||||
def stop(self):
|
||||
if self.after_id:
|
||||
self.root.after_cancel(self.after_id)
|
||||
self.after_id = None
|
||||
|
||||
def resume(self):
|
||||
if self.after_id is None:
|
||||
self.after_id = self.root.after(10, self.animate)
|
||||
|
||||
def times_one(self):
|
||||
self.advance_count = 1
|
||||
self.resume()
|
||||
|
||||
def times_five(self):
|
||||
self.advance_count = 5
|
||||
self.resume()
|
||||
|
||||
def times_ten(self):
|
||||
self.advance_count = 10
|
||||
self.resume()
|
||||
|
||||
def run(self):
|
||||
self.root.after(500, self.animate)
|
||||
self.root.mainloop()
|
||||
self.root.destroy()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
app = Main()
|
||||
app.run()
|
||||
@@ -285,7 +285,7 @@ class Main:
|
||||
|
||||
# create artists
|
||||
LOG.debug("Loading ticks...")
|
||||
self.xs, self.ys, self.vs = tdl(datetime.datetime(2009, 6, 25))
|
||||
self.xs, self.ys, self.vs = tdl(datetime.datetime(2009, 6, 29))
|
||||
LOG.debug("Ticks loaded.")
|
||||
lows, highs = find_lows_highs(self.xs, self.ys)
|
||||
|
||||
@@ -384,7 +384,6 @@ class Main:
|
||||
|
||||
def fib_low_high(self, n):
|
||||
tick = (n, self.xs[n], self.ys[n])
|
||||
redraw = False
|
||||
n, x, y = tick
|
||||
hin, hix, hiy = self.fibhi
|
||||
lon, lox, loy = self.fiblo
|
||||
|
||||
@@ -247,7 +247,11 @@ class DelayedAcp:
|
||||
|
||||
|
||||
def harvest_patterns():
|
||||
pass
|
||||
LOG.debug("Loading ticks...")
|
||||
xs, ys, vs = tdl(datetime.datetime(2009, 6, 25))
|
||||
LOG.debug("Ticks loaded.")
|
||||
lows, highs = find_lows_highs(xs, ys)
|
||||
|
||||
|
||||
def analyse_patterns():
|
||||
pass
|
||||
|
||||
Reference in New Issue
Block a user